IDEAS home Printed from https://ideas.repec.org/p/zbw/iwkrep/294841.html
   My bibliography  Save this paper

Generative KI in Deutschland: Künstliche Intelligenz in Gesellschaft und Unternehmen

Author

Listed:
  • Büchel, Jan
  • Engler, Jan

Abstract

Generative KI sorgte in jüngster Vergangenheit für großes Aufsehen. Grund ist, dass generative KI-Anwendungen selbstständig Inhalte wie Texte, Bilder, Programmiercodes oder Videos generieren können, die oft nur schwer von menschlich erstellten Inhalten zu unterscheiden sind. Sinnbildlich für generative KI steht dabei in der öffentlichen Wahrnehmung oft noch die spezifische Anwendung ChatGPT, wie eine Analyse der Internetsuchanfragen und Zeitungsartikel in Deutschland zeigt. Davon profitiert allerdings auch das generelle Interesse an KI nachhaltig. Eine Auswertung von Online-Stellenanzeigen zeigt dagegen, dass Unternehmen nicht nur Interesse an generativer KI zeigen, sondern immer häufiger konkrete Anwendungsfälle in ihren Unternehmen identifizieren und dafür entsprechende Kompetenzen suchen. Dabei nimmt ChatGPT in der ersten Jahreshälfte 2023 ebenfalls eine entscheidende Rolle ein und prägte das Kompetenzprofil vieler Stellenanzeigen. Allerdingslösen sich die Unternehmensbedarfe im zweiten Halbjahr zunehmend von diesem Fokus. Stattdessen nehmen Unternehmen weitere Anwendungen oder Einsatzbereiche sowie die zugrundeliegenden Modelle der generativen KI stärker in den Blick. Sie möchten eigene Anwendungen entwickeln, die auf die jeweiligen Bedarfe und Geschäftsmodelle der Unternehmen abgestimmt sind. Nichtsdestotrotz kommt ChatGPT eine innovationsreibende Wirkung zu, die diese Entwicklung begünstigt hat. Es zeigt sich etwa die Tendenz, dass gerade große Unternehmen personalisierte geschlossene Lösungen entwickeln möchten, in denen Daten das Unternehmensnetzwerk nicht verlassen. Es könnte ein Indiz dafür sein, dass sich Unternehmen in Deutschland verstärkt mit den Chancen und insbesondere auch den Kosten und Risiken beschäftigt haben, die mit generativer KI einhergehen. Denn der Einsatz von generativer KI wirft urheberrechtliche, haftungsrechtliche und datenschutzrechtliche Fragen auf, die teilweise noch nicht abschließend geklärt sind. Ebenso sind die Auswirkungen des kürzlich verabschiedeten AI Acts noch weitestgehend ungeklärt. Regional betrachtet, sind die Unternehmensbedarfe in den südwestlichen Städten Deutschlands sowie in Berlin und dem angrenzenden Umland besonders hoch. Ähnliche Clusterwirkungen sind in den Regionen um München, Stuttgart, Karlsruhe und Heidelberg sowie um Köln und Bonn erkennbar. Gerade Unternehmen aus dem Technologiebereich und Fahrzeugbau sowie Forschungseinrichtungen schreiben dort viele Stellenanzeigen zu generativer KI aus. In Berlin und München treiben ebenfalls viele KI-Start-ups die Bedarfe zu generativer KI.

Suggested Citation

  • Büchel, Jan & Engler, Jan, 2024. "Generative KI in Deutschland: Künstliche Intelligenz in Gesellschaft und Unternehmen," IW-Reports 23/2024, Institut der deutschen Wirtschaft (IW) / German Economic Institute.
  • Handle: RePEc:zbw:iwkrep:294841
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/294841/1/1888232471.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwkrep:294841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkolde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.