IDEAS home Printed from https://ideas.repec.org/p/zbw/itse19/205222.html
   My bibliography  Save this paper

Artificial Intelligence in Education: Can AI bring the full potential of personalized learning to education?

Author

Listed:
  • van der Vorst, Tommy
  • Jelicic, Nick

Abstract

In this study we explore the potential impact of educational AI applications in personalized learning. According to Bloom (1984) students that are tutored one-to-one perform two standard deviations better than students who learn via traditional educational methods. Due to the limited amount of teachers and costs associated, personalized one-to-one learning is not generally feasible from a societal point of view. Breakthroughs in the field of machine learning offer promising avenues to aid in personalized learning. AI may hence be the 'holy grail' in unlocking the potential of one-to-one learning, by enabling applications to offer personalized teaching to each individual student. We assess the potential impact of AI in personalized learning from a socio-technical perspective. Therefore, we investigate the technological possibilities, as well as any aspects that may impact adoption, e.g. legal, societal and ethical. To conclude we formulate policy options that can stimulate the adoption of AI-driven personalized learning applications.

Suggested Citation

  • van der Vorst, Tommy & Jelicic, Nick, 2019. "Artificial Intelligence in Education: Can AI bring the full potential of personalized learning to education?," 30th European Regional ITS Conference, Helsinki 2019 205222, International Telecommunications Society (ITS).
  • Handle: RePEc:zbw:itse19:205222
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/205222/1/van-der-Vorst-Jelicic.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daina Gudoniene & Evelina Staneviciene & Vytautas Buksnaitis & Nicola Daley, 2023. "The Scenarios of Artificial Intelligence and Wireframes Implementation in Engineering Education," Sustainability, MDPI, vol. 15(8), pages 1-18, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:itse19:205222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: http://www.itseurope.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.