IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2020011.html
   My bibliography  Save this paper

The Effect of Control Measures on COVID-19 Transmission and Work Resumption: International Evidence

Author

Listed:
  • Meng, Lina
  • Zhou, Yinggang
  • Zhang, Ruige
  • Ye, Zhen
  • Xia, Senmao
  • Cerulli, Giovanni
  • Casady, Carter
  • Härdle, Wolfgang Karl

Abstract

Many countries have taken non-pharmaceutical interventions (NPIs) to contain the spread of the coronavirus (COVID-19) and push the recovery of national economies. This paper investigates the effect of these control measures by comparing five selected countries, China, Italy, Germany, the United Kingdom, and the United States. There is evidence that the degree of early intervention and efficacy of control measures are essential to contain the pandemic. China stands out because its early and strictly enforced interventions are effective to contain the virus spread. Furthermore, we quantify the causal effect of different control measures on COVID-19 transmission and work resumption in China. Surprisingly, digital contact tracing and delegating clear responsibility to the local community appear to be the two most effective policy measures for disease containment and work resumption. Public information campaigns and social distancing also help to flatten the peak significantly. Moreover, material logistics that prevent medical supply shortages provide an additional conditioning factor for disease containment and work resumption. Fiscal policy, however, is less effective at the early to middle stage of the pandemic.

Suggested Citation

  • Meng, Lina & Zhou, Yinggang & Zhang, Ruige & Ye, Zhen & Xia, Senmao & Cerulli, Giovanni & Casady, Carter & Härdle, Wolfgang Karl, 2020. "The Effect of Control Measures on COVID-19 Transmission and Work Resumption: International Evidence," IRTG 1792 Discussion Papers 2020-011, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2020011
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230817/1/irtg1792dp2020-011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    2. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Wang, Weining & Wooldridge, Jeffrey M. & Xu, Mengshan, 2020. "Improved Estimation of Dynamic Models of Conditional Means and Variances," IRTG 1792 Discussion Papers 2020-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    2. Smith, Lisa C. & Frankenberger, Timothy R., 2022. "Recovering from severe drought in the drylands of Ethiopia: Impact of Comprehensive Resilience Programming," World Development, Elsevier, vol. 156(C).
    3. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Perkiss, Stephanie & Bernardi, Cristiana & Dumay, John & Haslam, Jim, 2021. "A sticky chocolate problem: Impression management and counter accounts in the shaping of corporate image," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 81(C).
    5. Chao, Shih-Kang & Härdle, Wolfgang K. & Huang, Chen, 2018. "Multivariate factorizable expectile regression with application to fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 1-19.
    6. Wang, Weining & Wooldridge, Jeffrey M. & Xu, Mengshan, 2020. "Improved Estimation of Dynamic Models of Conditional Means and Variances," IRTG 1792 Discussion Papers 2020-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Keywords

    COVID-19; coronavirus;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2020011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.