IDEAS home Printed from https://ideas.repec.org/p/zbw/imfswp/144.html
   My bibliography  Save this paper

Bayesian estimation of DSGE models with Hamiltonian Monte Carlo

Author

Listed:
  • Farkas, Mátyás
  • Tatar, Balint

Abstract

In this paper we adopt the Hamiltonian Monte Carlo (HMC) estimator for DSGE models by implementing it into a state-of-the-art, freely available high-performance software package. We estimate a small scale textbook New-Keynesian model and the Smets-Wouters model on US data. Our results and sampling diagnostics con firm the parameter estimates available in existing literature. In addition we combine the HMC framework with the Sequential Monte Carlo (SMC) algorithm which permits the estimation of DSGE models with ill-behaved posterior densities.

Suggested Citation

  • Farkas, Mátyás & Tatar, Balint, 2020. "Bayesian estimation of DSGE models with Hamiltonian Monte Carlo," IMFS Working Paper Series 144, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
  • Handle: RePEc:zbw:imfswp:144
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/223402/1/1728957516.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. King, Robert G & Watson, Mark W, 1998. "The Solution of Singular Linear Difference Systems under Rational Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1015-1026, November.
    3. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
    4. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    5. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    6. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    7. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Otrok, Christopher, 2001. "On measuring the welfare cost of business cycles," Journal of Monetary Economics, Elsevier, vol. 47(1), pages 61-92, February.
    10. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    11. Binder, Michael & Pesaran, M. Hashem, 1997. "Multivariate Linear Rational Expectations Models," Econometric Theory, Cambridge University Press, vol. 13(6), pages 877-888, December.
    12. Jesús Fernández-Villaverde & Pablo A. Guerrón-Quintana, 2021. "Estimating DSGE Models: Recent Advances and Future Challenges," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 229-252, August.
    13. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    14. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    15. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    16. Christiano, Lawrence J, 2002. "Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 21-55, October.
    17. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    18. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boehl, Gregor, 2022. "Efficient solution and computation of models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    2. Alfred Duncan, 2021. "Reverse mode differentiation for DSGE models," Studies in Economics 2108, School of Economics, University of Kent.
    3. Joshua Brault, 2024. "Parallel Tempering for DSGE Estimation," Staff Working Papers 24-13, Bank of Canada.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    2. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    3. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    4. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    5. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    6. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    7. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    8. Erceg, Christopher J. & Jakab, Zoltan & Lindé, Jesper, 2021. "Monetary policy strategies for the European Central Bank," Journal of Economic Dynamics and Control, Elsevier, vol. 132(C).
    9. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    10. Solis-Garcia, Mario, 2017. "Yes we can! Teaching DSGE models to undergraduate students," MPRA Paper 81754, University Library of Munich, Germany.
    11. Atkinson, Tyler & Richter, Alexander W. & Throckmorton, Nathaniel A., 2020. "The zero lower bound and estimation accuracy," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 249-264.
    12. Iiboshi, Hirokuni & Nishiyama, Shin-Ichi & Watanabe, Toshiaki, 2006. "An Estimated Dynamic Stochastic General Equilibrium Model of the Japanese Economy: A Bayesian Analysis," MPRA Paper 85702, University Library of Munich, Germany.
    13. Pytlarczyk, Ernest, 2005. "An estimated DSGE model for the German economy within the euro area," Discussion Paper Series 1: Economic Studies 2005,33, Deutsche Bundesbank.
    14. Ma, Yong & Li, Shushu, 2015. "Bayesian estimation of China's monetary policy transparency: A New Keynesian approach," Economic Modelling, Elsevier, vol. 45(C), pages 236-248.
    15. Arturo Ormeño & Krisztina Molnár, 2015. "Using Survey Data of Inflation Expectations in the Estimation of Learning and Rational Expectations Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 673-699, June.
    16. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," EconStor Preprints 269876, ZBW - Leibniz Information Centre for Economics.
    17. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," MPRA Paper 116480, University Library of Munich, Germany.
    18. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    19. Chatelain, Jean-Bernard & Ralf, Kirsten, 2018. "Publish and Perish: Creative Destruction and Macroeconomic Theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(2), pages 65-101.
    20. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.

    More about this item

    Keywords

    DSGE Estimation; Bayesian Analysis; Hamiltonian Monte Carlo;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:imfswp:144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hoffmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.