IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1746.html
   My bibliography  Save this paper

Parameter estimation and forecasting for multiplicative lognormal cascades

Author

Listed:
  • Leövey, Andrés E.
  • Lux, Thomas

Abstract

We study the well-known multiplicative Lognormal cascade process in which the multiplication of Gaussian and Lognormally distributed random variables yields time series with intermittent bursts of activity. Due to the non-stationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian pdf to empirical data, cf. Castaing et al. [Physica D, 46, 177 (1990)]. More recently, an alternative estimator based upon qth order absolute moments has been introduced by Kiyono et al. [Phys. Rev. E 76 41113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous Generalized Method of Moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono et al.'s procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.

Suggested Citation

  • Leövey, Andrés E. & Lux, Thomas, 2011. "Parameter estimation and forecasting for multiplicative lognormal cascades," Kiel Working Papers 1746, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1746
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/54943/1/680291849.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    random Lognormal cascades; GMM estimation; best linear forecasting; volatility of financial returns;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.