IDEAS home Printed from https://ideas.repec.org/p/zbw/hwuaef/303043.html
   My bibliography  Save this paper

Engle-Granger representation in spatial and spatio-temporal models

Author

Listed:
  • Bhattacharjee, Arnab
  • Ditzen, Jan
  • Holly, Sean

Abstract

The literature on panel models has made considerable progress in the last few decades, integrating non-stationary data both in the time and spatial domain. However, there remains a gap in the literature that simultaneously models non-stationarity and cointegration in both the time and spatial dimensions. This paper develops Granger representation theorems for spatial and spatio-temporal dynamics. In a panel setting, this provides a way to represent both spatial and temporal equilibria and dynamics as error correction models. This requires potentially two different processes for modelling spatial (or network) dynamics, both of which can be expressed in terms of spatial weights matrices. The first captures strong cross-sectional dependence, so that a spatial difference, suitably defined, is weakly cross-section dependent (granular) but can be nonstationary. The second is a conventional weights matrix that captures short-run spatio-temporal dynamics as stationary and granular processes. In large samples, cross-section averages serve the first purpose and we propose the mean group, common correlated effects estimator together with multiple testing of cross-correlations to provide the short-run spatial weights. We apply this model to house prices in the 375 MSAs of the US. We show that our approach is useful for capturing both weak and strong cross-section dependence, and partial adjustment to two long-run equilibrium relationships in terms of time and space.

Suggested Citation

  • Bhattacharjee, Arnab & Ditzen, Jan & Holly, Sean, 2024. "Engle-Granger representation in spatial and spatio-temporal models," Accountancy, Economics, and Finance Working Papers 2024-11, Heriot-Watt University, Department of Accountancy, Economics, and Finance.
  • Handle: RePEc:zbw:hwuaef:303043
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/303043/1/1902816536.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Chen & Yongcheol Shin & Chaowen Zheng, 2020. "Estimation and Inference in Heterogeneous Spatial Panel Data Models with a Multifactor Error Structure," Discussion Papers 20/03, Department of Economics, University of York.
    2. Jing Xing, 2011. "Does tax structure affect economic growth? Empirical evidence from OECD countries," Working Papers 1120, Oxford University Centre for Business Taxation.
    3. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    4. Peter Fuleky & Carl S. Bonham & Qianxue Zhao, 2013. "Estimating Demand Elasticities in Non-Stationary Panels: The Case of Hawaii's Tourism Industry," Working Papers 201314, University of Hawaii at Manoa, Department of Economics.
    5. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    6. Joseph P. Byrne & Alexandros Kontonikas & Alberto Montagnoli, 2013. "International Evidence on the New Keynesian Phillips Curve Using Aggregate and Disaggregate Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(5), pages 913-932, August.
    7. An Liu & Henk Folmer & Johan H L Oud, 2014. "Estimation of Autoregressive Models with Two Types of Weak Spatial Dependence by Means of the W-Based and the Latent Variables Approach: Evidence from Monte Carlo Simulations," Environment and Planning A, , vol. 46(1), pages 186-202, January.
    8. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    9. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    10. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    11. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    12. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    13. Pamela E. Ofori & Simplice A. Asongu & Vanessa S. Tchamyou, 2021. "The Synergy between Governance and Economic Integration in Promoting Female Economic Inclusion in Sub-Saharan Africa," Working Papers 21/071, European Xtramile Centre of African Studies (EXCAS).
    14. Kyoji Fukao & Cristiano Perugini, 2021. "The Long‐Run Dynamics of the Labor Share in Japan," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(2), pages 445-480, June.
    15. Timo Mitze, 2012. "Testing the Neoclassical Migration Model: Overall and Age-Group Specific Results for German Regions," Lecture Notes in Economics and Mathematical Systems, in: Empirical Modelling in Regional Science, edition 127, chapter 0, pages 53-82, Springer.
    16. Bergin, Paul R. & Glick, Reuven & Wu, Jyh-Lin, 2014. "Mussa redux and conditional PPP," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 101-114.
    17. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    18. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    19. Bergin, Paul R. & Glick, Reuven & Wu, Jyh-Lin, 2017. "“Conditional PPP” and real exchange rate convergence in the euro area," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 78-92.
    20. Mitze, Timo & Makkonen, Teemu, 2023. "Can large-scale RDI funding stimulate post-crisis recovery growth? Evidence for Finland during COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    More about this item

    Keywords

    Spatio-temporal dynamics; Error Correction Models; Weak and strong cross sectional dependence; US house prices; Spatial weight matrices; Common Correlated Effects estimator;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwuaef:303043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dehwuuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.