IDEAS home Printed from https://ideas.repec.org/p/zbw/fomild/35.html
   My bibliography  Save this paper

Maschinelles Lernen zur Erkennung von SMS-Spam

Author

Listed:
  • Keinhörster, Mark
  • Sandhaus, Gregor

Abstract

For more than 2 decades the popularity of text messages has been continuously increasing. At the same time the abuse of short message services (SMS) in terms of SMS-Spam is also increasing and leads to high costs and data security issues for mobile users as well as for service providers. In this working paper the concepts of machine learning are elaborated to identify automatically possible SMS-Spam and therefore improve the service quality of telecommunication companies. The recognition of SPAM is hereby based upon the classification of text messages with the help of the a) Bayes' theorem by fragmenting the text message into n-grams and to determine the likelihood for SPAM. Deploying vertical n-grams is hereby a new approach. b) Multilayer perceptron (neural networks) and the Backpropagation learning algorithm. The ROC curve (receiver operation characteristic) and corresponding measures are used to compare and evaluate both methods.

Suggested Citation

  • Keinhörster, Mark & Sandhaus, Gregor, 2013. "Maschinelles Lernen zur Erkennung von SMS-Spam," ild Schriftenreihe 35, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
  • Handle: RePEc:zbw:fomild:35
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fomild:35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fommmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.