IDEAS home Printed from https://ideas.repec.org/p/zbw/efisdi/82015.html
   My bibliography  Save this paper

Quantilbasierte Indikatoren für Impact und Publikationsstrategie: Ergebnisse für Deutschland in allen Fachdisziplinen in den Jahren 2000 bis 2011

Author

Listed:
  • Donner, Paul
  • Aman, Valeria

Abstract

In der vorliegenden Studie wird die Forschungsperformance Deutschlands unter den einflussreichsten Publikationen in allen Fachgebieten untersucht. Dazu werden Zeitreihen des korrigierten Anteils deutscher Publikationen unter den 10% höchstzitierten Artikeln mit Fehlerbalken dargestellt und ausgewertet. Um die Ergebnisse sowohl detailliert in Spezialdisziplinen als auch auf der Ebene weiter gefasster Wissenschaftsbereiche zu zeigen, werden drei verschiedene Klassifikationen parallel verwendet. Der Anteil hochzitierter Artikel für Deutschland insgesamt stieg von unter 10% im Jahr 2000 auf über 11% im letzen Beobachtungsjahr 2011. International maßgebliche Spitzenforschung findet in Deutschland in den Geowissenschaften, Materialwissenschaften, Umwelt-/Biotechnologie, Physik und Agrarwissenschaften statt. Spezialdisziplinen mit herausragenden Ergebnissen sind Pharmazie, Polymerforschung und Optik. Zudem wurde bestimmt, wie gut es deutschen Wissenschaftlern gelingt, ihre Artikel auch in den laut SNIP-Indikator relevantesten 10% der Fachzeitschriften zu lancieren. Dies gelingt in besonderem Maße in den Bereichen Biologie, Biotechnologie, chemische Verfahrenstechnik, Medizintechnik und Medizin.

Suggested Citation

  • Donner, Paul & Aman, Valeria, 2015. "Quantilbasierte Indikatoren für Impact und Publikationsstrategie: Ergebnisse für Deutschland in allen Fachdisziplinen in den Jahren 2000 bis 2011," Studien zum deutschen Innovationssystem 8-2015, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
  • Handle: RePEc:zbw:efisdi:82015
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/156618/1/StuDIS_2015-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Glänzel & Henk F. Moed, 2013. "Opinion paper: thoughts and facts on bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 381-394, July.
    2. Lutz Bornmann, 2014. "How are excellent (highly cited) papers defined in bibliometrics? A quantitative analysis of the literature," Research Evaluation, Oxford University Press, vol. 23(2), pages 166-173.
    3. Pedro Albarrán & Javier Ruiz‐Castillo, 2011. "References made and citations received by scientific articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 40-49, January.
    4. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    5. Waltman, Ludo & van Eck, Nees Jan & van Leeuwen, Thed N. & Visser, Martijn S., 2013. "Some modifications to the SNIP journal impact indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 272-285.
    6. Moed, Henk F., 2010. "Measuring contextual citation impact of scientific journals," Journal of Informetrics, Elsevier, vol. 4(3), pages 265-277.
    7. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile-based bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    3. Mingers, John & Yang, Liying, 2017. "Evaluating journal quality: A review of journal citation indicators and ranking in business and management," European Journal of Operational Research, Elsevier, vol. 257(1), pages 323-337.
    4. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    5. Loet Leydesdorff & Lutz Bornmann & Jonathan Adams, 2019. "The integrated impact indicator revisited (I3*): a non-parametric alternative to the journal impact factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1669-1694, June.
    6. Bornmann, Lutz & Leydesdorff, Loet, 2017. "Skewness of citation impact data and covariates of citation distributions: A large-scale empirical analysis based on Web of Science data," Journal of Informetrics, Elsevier, vol. 11(1), pages 164-175.
    7. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    8. Chen, Kuan-Ming & Jen, Tsung-Hau & Wu, Margaret, 2014. "Estimating the accuracies of journal impact factor through bootstrap," Journal of Informetrics, Elsevier, vol. 8(1), pages 181-196.
    9. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    10. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2013. "Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (P1," Journal of Informetrics, Elsevier, vol. 7(4), pages 933-944.
    11. Loet Leydesdorff & Paul Wouters & Lutz Bornmann, 2016. "Professional and citizen bibliometrics: complementarities and ambivalences in the development and use of indicators—a state-of-the-art report," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2129-2150, December.
    12. Henk F. Moed, 2016. "Comprehensive indicator comparisons intelligible to non-experts: the case of two SNIP versions," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 51-65, January.
    13. Yves Fassin, 2020. "The HF-rating as a universal complement to the h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 965-990, November.
    14. Waltman, Ludo & van Eck, Nees Jan, 2013. "A systematic empirical comparison of different approaches for normalizing citation impact indicators," Journal of Informetrics, Elsevier, vol. 7(4), pages 833-849.
    15. Javier Ruiz-Castillo, 2013. "The role of statistics in establishing the similarity of citation distributions in a static and a dynamic context," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 173-181, July.
    16. Walters, William H., 2017. "Do subjective journal ratings represent whole journals or typical articles? Unweighted or weighted citation impact?," Journal of Informetrics, Elsevier, vol. 11(3), pages 730-744.
    17. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    18. Walters, William H., 2014. "Do Article Influence scores overestimate the citation impact of social science journals in subfields that are related to higher-impact natural science disciplines?," Journal of Informetrics, Elsevier, vol. 8(2), pages 421-430.
    19. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    20. Lehmann, Robert & Wohlrabe, Klaus, 2017. "Who is the ‘Journal Grand Master’? A new ranking based on the Elo rating system," Journal of Informetrics, Elsevier, vol. 11(3), pages 800-809.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:efisdi:82015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: http://www.e-fi.de/index.php?id=1&L=1 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.