IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/617.html
   My bibliography  Save this paper

Big Data, Data Mining, Machine Learning und Predictive Analytics: Ein konzeptioneller Überblick

Author

Listed:
  • Brühl, Volker

Abstract

Mit der fortschreitenden Digitalisierung von Wirtschaft und Gesellschaft wächst die Bedeutung von Big Data Analytics, maschinellem Lernen und Künstlicher Intelligenz für die Analyse und Pognose ökonomischer Trends. Allerdings werden in wirtschaftspolitischen Diskussionen diese Begriffe häufig verwendet, ohne dass jeweils klar zwischen den einzelnen Methoden und Disziplinen differenziert würde. Daher soll nachfolgend ein konzeptioneller Überblick über die Gemeinsamkeiten, Unterschiede und Interdependenzen der vielfältigen Begrifflichkeiten im Bereich Data Science gegeben werden. Denn gerade für Entscheidungsträger aus Wirtschaft und Politik kann eine grundlegende Einordnung der Konzepte eine sachgerechte Diskussion über politische Weichenstellungen erleichtern.

Suggested Citation

  • Brühl, Volker, 2019. "Big Data, Data Mining, Machine Learning und Predictive Analytics: Ein konzeptioneller Überblick," CFS Working Paper Series 617, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:617
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/191736/1/1047269953.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • A10 - General Economics and Teaching - - General Economics - - - General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.