IDEAS home Printed from https://ideas.repec.org/p/zbw/cegedp/307602.html
   My bibliography  Save this paper

Daily oil price shocks and their uncertainties

Author

Listed:
  • Wang, Shu

Abstract

This paper presents a high-frequency structural VAR framework for identifying oil price shocks and examining their uncertainty transmission in the U.S. macroeconomy and financial markets. Leveraging the stylized features of financial data - specifically, volatility clustering effectively captured by a GARCH model - this approach achieves global identification of shocks while allowing for volatility spillovers across them. Findings reveal that increased variance in aggregate demand shocks increases the oil-equity price covariance, while precautionary demand shocks, triggering heightened investor risk aversion, significantly diminish this covariance. A real-time forecast error variance decomposition further highlights that oil supply uncertainty was the primary source of oil price forecast uncertainty from late March to early May 2020, yet it contributed minimally during the 2022 Russian invasion of Ukraine.

Suggested Citation

  • Wang, Shu, 2024. "Daily oil price shocks and their uncertainties," University of Göttingen Working Papers in Economics 436, University of Goettingen, Department of Economics.
  • Handle: RePEc:zbw:cegedp:307602
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/307602/1/1911757490.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    2. Lanne, Markku & Saikkonen, Pentti, 2007. "A Multivariate Generalized Orthogonal Factor GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 61-75, January.
    3. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    2. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    3. Stefan Bruder, 2018. "Inference for structural impulse responses in SVAR-GARCH models," ECON - Working Papers 281, Department of Economics - University of Zurich.
    4. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    5. Boeckelmann Lukas & Stalla-Bourdillon Arthur, 2021. "Structural Estimation of Time-Varying Spillovers: An Application to International Credit Risk Transmission," Working papers 798, Banque de France.
    6. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    7. Lütkepohl, Helmut & Milunovich, George & Yang, Minxian, 2020. "Inference in partially identified heteroskedastic simultaneous equations models," Journal of Econometrics, Elsevier, vol. 218(2), pages 317-345.
    8. Daniel J Lewis, 2021. "Identifying Shocks via Time-Varying Volatility [First Order Autoregressive Processes and Strong Mixing]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3086-3124.
    9. repec:bgu:wpaper:0608 is not listed on IDEAS
    10. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(2), pages 336-363, April.
    11. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    12. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    14. Verbrugge, Randal & Zaman, Saeed, 2023. "The hard road to a soft landing: Evidence from a (modestly) nonlinear structural model," Energy Economics, Elsevier, vol. 123(C).
    15. Gahn, Santiago José, 2021. "On the adjustment of capacity utilisation to aggregate demand: Revisiting an old Sraffian critique to the Neo-Kaleckian model," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 325-360.
    16. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    17. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    18. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Matteo Deleidi & Claudia Fontanari & Santiago José Gahn, 2023. "Autonomous demand and technical change: exploring the Kaldor–Verdoorn law on a global level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(1), pages 57-80, April.
    20. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    21. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.

    More about this item

    Keywords

    Oil price; uncertainty; impulse response functions; structural VAR; forecast error variance decomposition; GARCH;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cegedp:307602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cdgoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.