IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/7366.html
   My bibliography  Save this paper

On the Interpretation of Price Adjustments and Demand in Asset Pricing Models with Mean-Variance Optimization

Author

Listed:
  • Franke, Reiner

Abstract

With reference to the class of asset pricing models with a market maker and mean-variance optimization of speculative agents, the note seeks to clarify the concepts behind the price adjustment rule, which are often treated somewhat carelessly in this literature. Calling attention to the distinction between the agents? desired holding of the risky asset and the desired change in their position, the following conclusion is drawn. If market prices are said to adjust in the direction of excess demand, then the story of the maximization of expected wealth should be dropped. On the other hand, the story could be perfectly maintained if the market maker were assumed to adjust prices inversely to his accumulated inventory.

Suggested Citation

  • Franke, Reiner, 2008. "On the Interpretation of Price Adjustments and Demand in Asset Pricing Models with Mean-Variance Optimization," Economics Working Papers 2008-13, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:7366
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22057/1/EWP-2008-13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reiner Franke & Toichiro Asada, 2008. "Incorporating positions into asset pricing models with order-based strategies," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(2), pages 201-227, December.
    2. Bottazzi, Giulio & Dosi, Giovanni & Rebesco, Igor, 2005. "Institutional architectures and behavioral ecologies in the dynamics of financial markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 197-228, February.
    3. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    4. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Weihong Huang, 2018. "Impact of strategy switching on wealth accumulation," Journal of Evolutionary Economics, Springer, vol. 28(4), pages 961-983, September.
    2. Franke, Reiner, 2008. "Artificial Long Memory Effects in Two Agend-Based Asset Pricing Models," Economics Working Papers 2008-15, Christian-Albrechts-University of Kiel, Department of Economics.
    3. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    4. Dieci, Roberto & Westerhoff, Frank, 2010. "Heterogeneous speculators, endogenous fluctuations and interacting markets: A model of stock prices and exchange rates," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 743-764, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    2. Franke, Reiner, 2009. "A prototype model of speculative dynamics with position-based trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1134-1158, May.
    3. Zhu, Mei & Chiarella, Carl & He, Xue-Zhong & Wang, Duo, 2009. "Does the market maker stabilize the market?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3164-3180.
    4. Changtai Li & Weihong Huang & Wei-Siang Wang & Wai-Mun Chia, 2023. "Price Change and Trading Volume: Behavioral Heterogeneity in Stock Market," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 677-713, February.
    5. Weihong Huang & Huanhuan Zheng & Wai-Mun Chia, 2013. "Asymmetric returns, gradual bubbles and sudden crashes," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 420-437, May.
    6. Noemi Schmitt & Frank Westerhoff, 2017. "Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1041-1070, November.
    7. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    8. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    9. He, Xue-Zhong & Li, Kai, 2012. "Heterogeneous beliefs and adaptive behaviour in a continuous-time asset price model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 973-987.
    10. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    11. He, Xue-Zhong & Li, Youwei & Zheng, Min, 2019. "Heterogeneous agent models in financial markets: A nonlinear dynamics approach," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 135-149.
    12. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    13. Huang, Weihong & Zheng, Huanhuan & Chia, Wai-Mun, 2010. "Financial crises and interacting heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1105-1122, June.
    14. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
    15. Dieci, Roberto & Schmitt, Noemi & Westerhoff, Frank, 2018. "Interactions between stock, bond and housing markets," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 43-70.
    16. Reiner Franke & Toichiro Asada, 2008. "Incorporating positions into asset pricing models with order-based strategies," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(2), pages 201-227, December.
    17. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    18. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    19. Witte, Björn-Christopher, 2011. "Removing systematic patterns in returns in a financial market model by artificially intelligent traders," BERG Working Paper Series 82, Bamberg University, Bamberg Economic Research Group.
    20. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.

    More about this item

    Keywords

    Expected wealth maximization; market maker; positions of speculative agents;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:7366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.