IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/201404.html
   My bibliography  Save this paper

Identification of prior information via moment-matching

Author

Listed:
  • Sacht, Stephen

Abstract

In this paper we apply a sensitivity analysis regarding two types of prior information considered within the Bayesian estimation of a standard hybrid New-Keynesian model. In particular, we shed a light on the impact of micro- and macropriors on the estimation outcome. First, we investigate the impact of the transformation of those model parameters which are bounded to the unit interval, in order to allow for a more diffuse prior distribution. Second, we combine the Moment-Matching (MM, Franke et al. (2012)) and Bayesian technique in order to evaluate macropriors. In this respect we define a two-stage estimation procedure - the so-called Moment-Matching based Bayesian (MoMBay) estimation approach - where we take the point estimates evaluated via MM and consider them as prior mean values of the parameters within Bayesian estimation. We show that while (transformed) micropriors are often used in the literature, applying macropriors evaluated via the MoMBay approach leads to a better fit of the structural model to the data. Furthermore, there is evidence for intrinsic (degree of price indexation) rather than extrinsic (autocorrelation in the shock process) persistence - an observation which stands in contradiction to the results documented in the recent literature.

Suggested Citation

  • Sacht, Stephen, 2014. "Identification of prior information via moment-matching," Economics Working Papers 2014-04, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:201404
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/90812/1/777070227.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franke, Reiner & Jang, Tae-Seok & Sacht, Stephen, 2015. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 126-154.
    2. Lombardi, Marco J. & Nicoletti, Giulio, 2012. "Bayesian prior elicitation in DSGE models: Macro- vs micropriors," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 294-313.
    3. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    4. Sacht, Stephen, 2014. "Analysis of Various Shocks within the High-Frequency Versions of the Baseline New-Keynesian Model," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100372, Verein für Socialpolitik / German Economic Association.
    5. Sacht, Stephen, 2014. "Optimal monetary policy responses and welfare analysis within the highfrequency New-Keynesian framework," Economics Working Papers 2014-03, Christian-Albrechts-University of Kiel, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franke, Reiner & Jang, Tae-Seok & Sacht, Stephen, 2015. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 126-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Seok Jang & Stephen Sacht, 2016. "Animal Spirits and the Business Cycle: Empirical Evidence from Moment Matching," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 76-113, February.
    2. Jump, Robert Calvert & Levine, Paul, 2019. "Behavioural New Keynesian models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 59-77.
    3. Fasolo, Angelo M. & Araujo, Eurilton & Jorge, Marcos Valli & Kornelius, Alexandre & Marinho, Leonardo Sousa Gomes, 2024. "Brazilian macroeconomic dynamics redux: Shocks, frictions, and unemployment in SAMBA model," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(2).
    4. Gelain, Paolo & Manganelli, Simone, 2020. "Monetary policy with judgment," Working Paper Series 2404, European Central Bank.
    5. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    6. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    7. Zheng Liu, 2009. "Sources of the Great Moderation: Shocks, Frictions, or Monetary Policy?," 2009 Meeting Papers 379, Society for Economic Dynamics.
    8. Javier García-Cicco, 2010. "Estimating Models for Monetary Policy Analysis in Emerging Countries," Working Papers Central Bank of Chile 561, Central Bank of Chile.
    9. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    10. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    11. repec:zbw:bofrdp:2010_011 is not listed on IDEAS
    12. Luigi Paciello, 2012. "Monetary Policy and Price Responsiveness to Aggregate Shocks under Rational Inattention," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1375-1399, October.
    13. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    14. Pelin Ilbas & Øistein Røisland & Tommy Sveen, 2013. "The Influence of the Taylor rule on US monetary policy," Working Paper Research 241, National Bank of Belgium.
    15. Alejandro Justiniano & Claudio Michelacci, 2011. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies in the US and Europe," NBER Working Papers 17429, National Bureau of Economic Research, Inc.
    16. Eric M. Leeper & Nora Traum & Todd B. Walker, 2017. "Clearing Up the Fiscal Multiplier Morass," American Economic Review, American Economic Association, vol. 107(8), pages 2409-2454, August.
    17. Valerio Scalone, 2015. "Estimating Non-Linear DSGEs with the Approximate Bayesian Computation: an application to the Zero Lower Bound," Working Papers 6/15, Sapienza University of Rome, DISS.
    18. Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "A Bayesian DSGE Approach to Modelling Cryptocurrency"," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1012-1035, December.
    19. Hürtgen, Patrick, 2014. "Consumer misperceptions, uncertain fundamentals, and the business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 279-292.
    20. Giacomini, Raffaella & Ragusa, Giuseppe & Gallant, A. Ronald, 2013. "Generalized Method of Moments with Latent Variables," CEPR Discussion Papers 9692, C.E.P.R. Discussion Papers.
    21. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.

    More about this item

    Keywords

    Bayesian estimation; moment-matching estimation; mombay estimation; New-Keynesian model; micropriors; macropriors;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:201404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.