IDEAS home Printed from https://ideas.repec.org/p/zbw/caseps/200415.html
   My bibliography  Save this paper

Dimension Reduction Methods

Author

Listed:
  • Mizuta, Masahiro

Abstract

One characteristic of computational statistics is the processing of enormous amounts of data. It is now possible to analyze large amounts of highdimensional data through the use of high-performance contemporary computers. In general, however, several problems occur when the number of dimensions becomes high. The first problem is an explosion in execution time. For example, the number of combinations of subsets taken from p variables is 2p; when p exceeds 20, calculation becomes difficult pointing terms of computation time. When p exceeds 25, calculation becomes an impossible no matter what type of computer is used. This is a fundamental situation that arises in the selection of explanatory variables during regression analysis. The second problem is the sheer cost of surveys or experiments. When questionnaire surveys are conducted, burden is placed on the respondent because there are many questions. And since there are few inspection items to a patient, there are few the burdens on the body or on cost. The third problem is the essential restriction of methods. When the number of explanatory variables is greater than the data size, most methods are incapable of directly dealing with the data; microarray data are typical examples of this type of data. For these reasons, methods for dimension reduction without loss of statistical information are important techniques for data analysis. In this chapter, we will explain linear and nonlinear methods for dimension reduction; linear methods reduce dimension through the use of linear combinations of variables, and nonlinear methods do so with nonlinear functions of variables. We will also discuss the reduction of explanatory variables in regression analysis. Explanatory variables can be reduced with several linear combinations of explanatory variables.

Suggested Citation

  • Mizuta, Masahiro, 2004. "Dimension Reduction Methods," Papers 2004,15, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
  • Handle: RePEc:zbw:caseps:200415
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22189/1/15_mm.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:caseps:200415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cahubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.