IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/6883.html
   My bibliography  Save this paper

Does Benford's law hold in economic research and forecasting?

Author

Listed:
  • Günnel, Stefan
  • Tödter, Karl-Heinz

Abstract

First and higher order digits in data sets of natural and socio-economic processes often follow a distribution called Benford's law. This phenomenon has been used in many business and scientific applications, especially in fraud detection for financial data. In this paper, we analyse whether Benford's law holds in economic research and forecasting. First, we examine the distribution of leading digits of regression coefficients and standard errors in research papers, published in Empirica and Applied Economics Letters. Second, we analyse forecasts of GDP growth and CPI inflation in Germany, published in Consensus Forecasts. There are two main findings: The relative frequencies of the first and second digits in economic research are broadly consistent with Benford's law. In sharp contrast, the second digits of Consensus Forecasts exhibit a massive excess of zeros and fives, raising doubts on their information content.

Suggested Citation

  • Günnel, Stefan & Tödter, Karl-Heinz, 2007. "Does Benford's law hold in economic research and forecasting?," Discussion Paper Series 1: Economic Studies 2007,32, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:6883
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/19709/1/200732dkp.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Benford's Law; fraud detection; regression coefficients and standard errors; growth and inflation forecasts;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:6883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.