IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/4200.html
   My bibliography  Save this paper

A comparison of dynamic panel data estimators: Monte Carlo evidence and an application to the investment function

Author

Listed:
  • Behr, Andreas

Abstract

In our analysis we discuss several dynamic panel data estimators proposed in the literature and assess their performance in Monte Carlo simulations. It is a well known fact that the natural choice, the least squares dummy variable estimator is biased in the context of dynamic estimation. The estimators taking into account the resulting bias can be grouped broadly into the class of instrumental estimators and the class of direct bias corrected estimators. The simulation results clearly favour the direct bias corrected estimators, especially the estimator proposed by Hansen (2001). The superiority of these estimators decreases with growing numbers of individuals in the simulation. This is the well known fact of large sample properties of the GMM-methods. In the case of endogenous predetermined regressors, the system-estimator proposed by Blundell and Bond is unbiased and most efficient, while direct bias corrected estimators perform similar to the GMM-estimator proposed by Arellano and Bond (1991). Turning to the empirical comparison, we find that the different estimators lead to the same conclusions concerning the investment behaviour of German manufacturing firms based on the Deutsche Bundesbank's Corporate Balance Sheet Statistics. Investment is strongly positive dependent on lagged investment and Q. Nevertheless, in detail the differences of the estimated parameters are not negligible.

Suggested Citation

  • Behr, Andreas, 2003. "A comparison of dynamic panel data estimators: Monte Carlo evidence and an application to the investment function," Discussion Paper Series 1: Economic Studies 2003,05, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:4200
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/19591/1/200305dkp.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    dynamic panel data estimation; GMM; bias correction; investment;
    All these keywords.

    JEL classification:

    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:4200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.