IDEAS home Printed from https://ideas.repec.org/p/zbw/bofrdp/rdp2018_007.html
   My bibliography  Save this paper

The equity risk premium and the low frequency of the term spread

Author

Listed:
  • Faria, Gonçalo
  • Verona, Fabio

Abstract

We extract cycles in the term spread (TMS) and study their role for predicting the equity risk premium (ERP) using linear models. The low frequency component of the TMS is a strong and robust out-of-sample ERP predictor. It obtains out-of-sample R-squares (versus the historical mean benchmark) of 1.98% and 22.1% for monthly and annual data, respectively. It forecasts well also during expansions and outperforms several variables that have been proposed as good ERP predictors. Its predictability power comes exclusively from the discount rate channel. Contrarily, the high and business-cycle frequency components of the TMS are poor out-of-sample ERP predictors.

Suggested Citation

  • Faria, Gonçalo & Verona, Fabio, 2018. "The equity risk premium and the low frequency of the term spread," Bank of Finland Research Discussion Papers 7/2018, Bank of Finland.
  • Handle: RePEc:zbw:bofrdp:rdp2018_007
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/212415/1/bof-rdp2018-007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    2. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoxiu Qiao & Wanmei Cui & Yijie Zhou & Chao Liang, 2025. "Volatility of Volatility and VIX Forecasting: New Evidence Based on Jumps, the Short‐Term and Long‐Term Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 23-46, January.
    2. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens J. Krüger, 2021. "A Wavelet Evaluation of Some Leading Business Cycle Indicators for the German Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(3), pages 293-319, December.
    2. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    3. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
    4. Dejan Živkov & Slavica Manić & Jelena Kovačević & Željana Trbović, 2022. "Assessing volatility transmission between Brent and stocks in the major global oil producers and consumers – the multiscale robust quantile regression," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(1), pages 67-93, January.
    5. Wu, Kai & Zhu, Jingran & Xu, Mingli & Yang, Lu, 2020. "Can crude oil drive the co-movement in the international stock market? Evidence from partial wavelet coherence analysis," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    6. Migliavacca, Milena & Goodell, John W. & Paltrinieri, Andrea, 2023. "A bibliometric review of portfolio diversification literature," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    8. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    9. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.
    10. Dinesh Gajurel & Akhila Chawla, 2022. "International Information Spillovers and Asymmetric Volatility in South Asian Stock Markets," JRFM, MDPI, vol. 15(10), pages 1-18, October.
    11. Yousfi, Mohamed & Farhani, Ramzi & Bouzgarrou, Houssam, 2024. "From the pandemic to the Russia–Ukraine crisis: Dynamic behavior of connectedness between financial markets and implications for portfolio management," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1178-1197.
    12. Marcos Albuquerque Junior & José António Filipe & Paulo de Melo Jorge Neto & Cristiano da Costa da Silva, 2021. "Assessing the Time-Frequency Co-Movements among the Five Largest Engineering Consulting Companies: A Wavelet-Base Metrics of Contagion and VaR Ratio," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    13. Zhou, Zhongbao & Lin, Ling & Li, Shuxian, 2018. "International stock market contagion: A CEEMDAN wavelet analysis," Economic Modelling, Elsevier, vol. 72(C), pages 333-352.
    14. Samia Nasreen & Syed Asif Ali Naqvi & Aviral Kumar Tiwari & Shawkat Hammoudeh & Syed Ale Raza Shah, 2020. "A Wavelet-Based Analysis of the Co-Movement between Sukuk Bonds and Shariah Stock Indices in the GCC Region: Implications for Risk Diversification," JRFM, MDPI, vol. 13(4), pages 1-21, March.
    15. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël & Yousfi, Mohamed, 2024. "Do green investments improve portfolio diversification? Evidence from mean conditional value-at-risk optimization," International Review of Financial Analysis, Elsevier, vol. 94(C).
    16. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.
    17. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    18. Louis R. Piccotti, 2022. "Portfolio returns and consumption growth covariation in the frequency domain, real economic activity, and expected returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(3), pages 513-549, September.
    19. Muhammad Azmat Hayat & Huma Ghulam & Maryam Batool & Muhammad Zahid Naeem & Abdullah Ejaz & Cristi Spulbar & Ramona Birau, 2021. "Investigating the Causal Linkages among Inflation, Interest Rate, and Economic Growth in Pakistan under the Influence of COVID-19 Pandemic: A Wavelet Transformation Approach," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    20. Das, Debojyoti & Bhowmik, Puja & Jana, R.K., 2018. "A multiscale analysis of stock return co-movements and spillovers: Evidence from Pacific developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 379-393.

    More about this item

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofrdp:rdp2018_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.