IDEAS home Printed from https://ideas.repec.org/p/ysm/wpaper/amz2567.html
   My bibliography  Save this paper

Optimal Dynamic Trading Strategies with Risk Limits

Author

Listed:
  • Domenico Cuoco
  • Hua He
  • Sergei Isaenko

Abstract

Value at Risk (VaR) has emerged in recent years as a standard tool to measure and control the risk of trading portfolios. Yet, existing theoretical analyses of the optimal behavior of a trader subject to VaR limits have produced a negative view of VaR as a risk-control tool. In particular, VaR limits have been found to induce increased risk exposure in some states and an increased probability of extreme losses. However, these conclusions are based on models that are either static or dynamically inconsistent. In this paper, we formulate a dynamically consistent model of optimal portfolio choice subject to VaR limits and show that the conclusions of earlier papers are incorrect if, consistently with common practice, the portfolio VaR is reevaluated dynamically making use of available conditioning information. In particular, we find that the risk exposure of a trader subject to a VaR limit is always lower than that of an unconstrained trader and that the probability of extreme losses is also lower. We also consider risk limits formulated in terms of Tail Conditional Expectation (TCE), a coherent risk measure often advocated as an alternative to VaR, and show that in our dynamic setting it is always possible to transform a TCE limit into an equivalent VaR limit, amid conversely.

Suggested Citation

  • Domenico Cuoco & Hua He & Sergei Isaenko, 2004. "Optimal Dynamic Trading Strategies with Risk Limits," Yale School of Management Working Papers amz2567, Yale School of Management.
  • Handle: RePEc:ysm:wpaper:amz2567
    as

    Download full text from publisher

    File URL: https://repec.som.yale.edu/icfpub/publications/2567.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    2. Boon, L.N. & Brière, M. & Rigot, S., 2018. "Regulation and pension fund risk-taking," Journal of International Money and Finance, Elsevier, vol. 84(C), pages 23-41.
    3. Bertrand, Philippe & Prigent, Jean-luc, 2016. "Equilibrium of financial derivative markets under portfolio insurance constraints," Economic Modelling, Elsevier, vol. 52(PA), pages 278-291.
    4. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    5. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    6. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    7. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    8. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    9. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    10. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    11. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    12. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    13. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    14. J. Christopher Westland, 2015. "Economics of eBay’s buyer protection plan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-20, December.
    15. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    16. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    17. Mark Carey & René M. Stulz, 2007. "The Risks of Financial Institutions," NBER Books, National Bureau of Economic Research, Inc, number care06-1.
    18. Xiaoou Li & Jingchen Liu & Gongjun Xu, 2016. "On the Tail Probabilities of Aggregated Lognormal Random Fields with Small Noise," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 236-246, February.
    19. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    20. Emilios Galariotis & Joëlle Miffre & Benoît Sévi, 2024. "Editorial for the special issue of the journal of banking & finance on asset pricing and factor investing," Post-Print hal-04528748, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ysm:wpaper:amz2567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/smyalus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.