IDEAS home Printed from https://ideas.repec.org/p/ysm/somwrk/ysm318.html
   My bibliography  Save this paper

A Simple Decentralized Institution for Learning Competitive Equilibrium

Author

Listed:
  • Sean Crockett
  • Shyam Sunder
  • Stephen Spear

Abstract

The epsilon-intelligent competitive equilibrium algorithm is a decentralized alternative to Walrus' tatonnement procedure for markets to arrive at competitive equilibrium. We build on the Gode-Spear-Sunder zero-intelligent algorithm in which random generation of bids and offers from agents' welfare-enhancing opportunity sets generates Pareto optimal allocations in a pure exchange economy. We permit agents to know if they are subsidizing others at such allocations, and to veto such allocations, restricting the subsequent iterations of the algorithm only to those trades that are both Pareto-improving and provide strictly greater wealth, and ultimately utility, for such agents. In this simple institution actions of minimally intelligent agents based on local information can lead the market to approximate competitive equilibrium in a larger set of economies than the tatonnement process would allow. This helps address one of the major shortcomings of the Arrow-Debreu-McKenzie model with respect to the instability of tatonnement in an open set of economies. It also addresses the behavioral critique of mathematically derived equilibria for the inability of cognitively-limited humans to maximize. The proof of convergence of the algorithm presented here also provides a way of showing the existence of competitive equilibrium for monotonic, convex exchange economies with heterogeneous agents and many goods without application of a fixed-point theorem.

Suggested Citation

  • Sean Crockett & Shyam Sunder & Stephen Spear, 2002. "A Simple Decentralized Institution for Learning Competitive Equilibrium," Yale School of Management Working Papers ysm318, Yale School of Management, revised 01 Feb 2003.
  • Handle: RePEc:ysm:somwrk:ysm318
    as

    Download full text from publisher

    File URL: http://icfpub.som.yale.edu/publications/2646
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/smyalus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.