IDEAS home Printed from https://ideas.repec.org/p/wzb/wzebiv/fsiv99-21.html
   My bibliography  Save this paper

Multiproduct Competition, Learning by Doing and Price-Cost Margins over the Product Life Cycle: Evidence from the DRAM Industry

Author

Listed:
  • Ralph Siebert

Abstract

In this study we specify and estimate a structural model of multiproduct firms for the semiconductor industry. In addition, we explicitly consider dynamics over the product life cycle. We find that these two aspects have important implications and provide evidence that (i) Spillover and Economies of Scale effects are lower for multiproduct firms than for single product firms, whereas Learning by Doing effects are slightly higher. We also find that firms follow an intertemporal output strategy. Furthermore, we provide evidence that, once multiproduct firms are introduced, firms behave as if in perfect competition. A single product specification leads to firms behaving even "softer" than Cournot players in the product market. We show that (ii) Learning by Doing, Economies of Scale, and Spillover effects vary over the product cycle. Learning by Doing effects are higher at the end of the life cycle when new production technologies are developed. Economies of Scale are increasing and become smaller (larger) over the life cycle for multiproduct (single product) firms. We specify a dynamic theoretical model and estimate a dynamic structural model by using quarterly firm-level output and costs data as well as industry prices for the Dynamic Random Access Memory (DRAM) industry from 1974 to 1996. ZUSAMMENFASSUNG - (Mehrproduktwettbewerb, Learning by Doing und Price-Cost Margins über den Produktlebenszyklus: Beweis aus der DRAM Industrie) In dieser Studie spezifizieren und schätzen wir ein strukturelles Modell von Mehrproduktunternehmen in der Halbleiterindustrie. Zusätzlich berücksichtigen wir explizit die Dynamik über den Produktlebenszyklus. Unsere Ergebnisse zeigen, daß diese beiden Aspekte gravierende Auswirkungen besitzen. Wir zeigen, daß (i) Spillovers und Skalenerträge für Mehrproduktunternehmen geringer sind als für Einzelproduktunternehmen, wogegen Lerneffekte geringfügig größer ausfallen. Unsere Ergebnisse bestätigen auch, daß Unternehmen eine intertemporale Outputstrategie verfolgen. Weiterhin wird gezeigt, daß sich Mehrproduktunternehmen im perfekten Wettbewerb befinden, wobei sich Einzelproduktunternehmen ähnlich wie Cournot Spieler verhalten. Wir zeigen, daß (ii) Lerneffekte, Skalenerträge und Spillovereffekte über den Produktlebenszyklus variieren. Lerneffekte sind am Ende des Produktlebenszyklus größer, wenn neue Produkttechnologien entwickelt werden. Skalenerträge sind zunehmend und nehmen für Mehrproduktunternehmen (Einzelproduktunternehmen) im Ausmaß zum Ende des Produktlebenszyklus ab (zu). Wir spezifizieren ein dynamisches theoretisches Modell und schätzen ein dynamisches strukturelles Modell unter Verwendung von vierteljährlichen Output- und Kostendaten auf Unternehmensebene, von der .Dynamic Random Access Memory. (DRAM) Industrie für den Zeitraum von 1974 bis 1996.

Suggested Citation

  • Ralph Siebert, 1999. "Multiproduct Competition, Learning by Doing and Price-Cost Margins over the Product Life Cycle: Evidence from the DRAM Industry," CIG Working Papers FS IV 99-21, Wissenschaftszentrum Berlin (WZB), Research Unit: Competition and Innovation (CIG).
  • Handle: RePEc:wzb:wzebiv:fsiv99-21
    as

    Download full text from publisher

    File URL: http://skylla.wz-berlin.de/pdf/1999/iv99-21.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zulehner, Christine, 2003. "Testing dynamic oligopolistic interaction: evidence from the semiconductor industry," International Journal of Industrial Organization, Elsevier, vol. 21(10), pages 1527-1556, December.
    2. Apostolis Pavlou, 2015. "Learning by doing and horizontal mergers," Journal of Economics, Springer, vol. 116(1), pages 25-38, September.

    More about this item

    Keywords

    Multiproduct Competition; Learning by Doing; Product Life Cycle; Economies of Scale; Spillovers; Semiconductor; Process Innovation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L6 - Industrial Organization - - Industry Studies: Manufacturing
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wzb:wzebiv:fsiv99-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jennifer Rontganger (email available below). General contact details of provider: https://edirc.repec.org/data/cicwzde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.