IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1105.html
   My bibliography  Save this paper

Option pricing in subdiffusive Bachelier model

Author

Listed:
  • Marcin Magdziarz
  • Sebastian Orzel
  • Aleksander Weron

Abstract

The earliest model of stock prices based on Brownian diffusion is the Bachelier model. In this paper we propose an extension of the Bachelier model, which reflects the subdiffusive nature of the underlying asset dynamics. The subdiffusive property is manifested by the random (infinitely divisible) periods of time, during which the asset price does not change. We introduce a subdiffusive arithmetic Brownian motion as a model of stock prices with such characteristics. The structure of this process agrees with two-stage scenario underlying the anomalous diffusion mechanism, in which trapping random events are superimposed on the Langevin dynamics.We find the corresponding fractional Fokker-Planck equation governing the probability density function of the introduced process. We construct the corresponding martingale measure and show that the model is incomplete. We derive the formulas for European put and call option prices. We describe explicit algorithms and present some Monte-Carlo simulations for the particular cases of alpha-stable and tempered alpha-stable distributions of waiting times.

Suggested Citation

  • Marcin Magdziarz & Sebastian Orzel & Aleksander Weron, 2011. "Option pricing in subdiffusive Bachelier model," HSC Research Reports HSC/11/05, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc1105
    DOI: 10.1007/s10955-011-0310-z
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1007/s10955-011-0310-z
    File Function: Final printed version, 2011
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10955-011-0310-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
    2. Shchestyuk, Nataliya & Tyshchenkob, Sergii, 2024. "Subdiffusive option price model with Inverse Gaussian subordinator," Working Papers 2024:1, Örebro University, School of Business.
    3. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    4. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    5. Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.

    More about this item

    Keywords

    Subdiffusion; Fractional Fokker-Planck equation; Bachelier model; Option pricing; Infinitely divisible distribution; Tempered stable distribution;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.