IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0302.html
   My bibliography  Save this paper

Methods for determining the presence of periodic correlation based on the bootstrap methodology

Author

Listed:
  • Ewa Broszkiewicz-Suwaj

Abstract

This paper presents methods for detecting the period of non Gaussian PC processes. A new statistic for testing periodic correlation is proposed. It is based on the bootstrap procedure which is used to estimate confidence intervals of coherence statistic. This method is linked to that of Hurd and Gerr based on Goodman's tests so both methodologies are also compared. It is demonstrated that in some situations the new test appears to be better.

Suggested Citation

  • Ewa Broszkiewicz-Suwaj, 2003. "Methods for determining the presence of periodic correlation based on the bootstrap methodology," HSC Research Reports HSC/03/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc0302
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_03_02.pdf
    File Function: Original version, 2003
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broszkiewicz-Suwaj, E & Makagon, A & Weron, R & Wyłomańska, A, 2004. "On detecting and modeling periodic correlation in financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 196-205.
    2. Mohammad Reza Mahmoudi & Mohsen Maleki, 2017. "A new method to detect periodically correlated structure," Computational Statistics, Springer, vol. 32(4), pages 1569-1581, December.
    3. Mitra Ghanbarzadeh & Mina Aminghafari, 2016. "A Wavelet Characterization of Continuous-Time Periodically Correlated Processes with Application to Simulation," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 741-762, November.

    More about this item

    Keywords

    Periodic correlation; Bootstrap; Spectral representation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.