IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpio/0406008.html
   My bibliography  Save this paper

Hollywood blockbusters and long-tailed distributions: An empirical study of the popularity of movies

Author

Listed:
  • Sitabhra Sinha

    (Institute of Mathematical Sciences, Chennai, India)

  • S. Raghavendra

    (Madras School of Economics, Chennai, India)

Abstract

Numerical data for all movies released in theaters in the USA during the period 1997-2003 are examined for the distribution of their popularity in terms of (i) the number of weeks they spent in the Top 60 according to the weekend earnings, and (ii) the box-office gross during the opening week, as well as, the total duration for which they were shown in theaters. These distributions show long tails where the most popular movies are located. Like the study of Redner [S. Redner, Eur. Phys. J. B \textbf{4}, 131 (1998)] on the distribution of citations to individual papers, our results are consistent with a power-law dependence of the rank distribution of gross revenues for the most popular movies with a exponent close to -1/2.

Suggested Citation

  • Sitabhra Sinha & S. Raghavendra, 2004. "Hollywood blockbusters and long-tailed distributions: An empirical study of the popularity of movies," Industrial Organization 0406008, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpio:0406008
    Note: Type of Document - pdf; pages: 4
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/io/papers/0406/0406008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakrabarti, Anindya S., 2016. "Cross-correlation patterns in social opinion formation with sequential data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 442-454.
    2. Márton Mestyán & Taha Yasseri & János Kertész, 2013. "Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    2. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    3. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    4. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    5. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    6. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    7. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    8. Kutner, Ryszard & Wysocki, Krzysztof, 1999. "Applications of statistical mechanics to non-brownian random motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 67-84.
    9. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    10. Zhang, J.W. & Zhang, Y. & Kleinert, H., 2007. "Power tails of index distributions in chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 166-172.
    11. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    12. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    13. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    15. Demidov, Denis & Frahm, Klaus M. & Shepelyansky, Dima L., 2020. "What is the central bank of Wikipedia?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    17. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    18. Joachim Kaldasch, 2015. "Dynamic Model of the Price Dispersion of Homogeneous Goods," Papers 1509.01216, arXiv.org.
    19. Gianni Degasperi & Luca Erzegovesi, 1999. "I mercati finanziari come sistemi complessi: il modello di Vaga," Alea Tech Reports 007, Department of Computer and Management Sciences, University of Trento, Italy, revised 14 Jun 2008.
    20. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.

    More about this item

    JEL classification:

    • L - Industrial Organization

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpio:0406008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.