IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0004011.html
   My bibliography  Save this paper

On the NP-Completeness of Finding an Optimal Strategy in Games with Common Payoffs

Author

Listed:
  • Francis C. Chu

    (Cornell University)

  • Joseph Y. Halpern

    (Cornell University)

Abstract

Given a finite game with common payoffs (i.e. the players have completely common interests), we show that the problem of determining whether there exists a joint strategy where each player nets at least k is NP-complete.

Suggested Citation

  • Francis C. Chu & Joseph Y. Halpern, 2000. "On the NP-Completeness of Finding an Optimal Strategy in Games with Common Payoffs," Game Theory and Information 0004011, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpga:0004011
    Note: Type of Document - PDF; prepared on Unix; pages: 7; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0004/0004011.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.
    2. Fabrice Talla Nobibon & Laurens Cherchye & Yves Crama & Thomas Demuynck & Bram De Rock & Frits C. R. Spieksma, 2016. "Revealed Preference Tests of Collectively Rational Consumption Behavior: Formulations and Algorithms," Operations Research, INFORMS, vol. 64(6), pages 1197-1216, December.
    3. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    5. Tim Roughgarden, 2010. "Computing equilibria: a computational complexity perspective," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 193-236, January.
    6. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.

    More about this item

    Keywords

    common payoff games; NP-completeness;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0004011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.