IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/9602002.html
   My bibliography  Save this paper

Analytic Representations and Approximations to American Option Pricing

Author

Listed:
  • B. S. Balakrishna

    (University of Colorado)

Abstract

An exact integral representation is derived for the American option price. It is not easily solvable, but it leads to an efficient approximation scheme. The results obtained are very satisfactory and comparable to those available from other methods. In this method, critical stock prices can be computed with simple iterative techniques. The critical prices can then be used to compute the integral to obtain the option price. It is possible to compute corrections to this approximation if more accuracy is needed. The method is applied to puts and calls on stocks paying dividends.

Suggested Citation

  • B. S. Balakrishna, 1996. "Analytic Representations and Approximations to American Option Pricing," Finance 9602002, University Library of Munich, Germany, revised 13 Apr 1996.
  • Handle: RePEc:wpa:wuwpfi:9602002
    Note: 24 pages, PostScript File
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/9602/9602002.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/9602/9602002.ps.gz
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    2. Giandomenico, Rossano, 2006. "Valuing an American Put Option," MPRA Paper 20082, University Library of Munich, Germany.
    3. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    4. Engstrom, Malin & Norden, Lars, 2000. "The early exercise premium in American put option prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 461-479, December.
    5. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    6. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2018. "Leave-one-out least squares Monte Carlo algorithm for pricing Bermudan options," Papers 1810.02071, arXiv.org, revised May 2024.
    7. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    8. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    11. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    12. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    13. Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
    14. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    15. Hadjiyannakis, Steve & Culumovic, Louis & Welch, Robert L., 1998. "The relative mispricing of the constant variance American put model," International Review of Economics & Finance, Elsevier, vol. 7(2), pages 149-171.
    16. Luca Vincenzo Ballestra, 2018. "Fast and accurate calculation of American option prices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 399-426, November.
    17. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    18. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    19. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    20. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9602002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.