IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0105001.html
   My bibliography  Save this paper

Stochastic Dominance Efficiency Tests under Diversification

Author

Listed:
  • Timo Kuosmanen

    (Helsinki School of Economics)

Abstract

This paper focuses on Stochastic Dominance (SD) efficiency in a finite empirical panel data. We analytically characterize the sets of unsorted time series that dominate a given evaluated distribution by the First, Second, and Third order SD. Using these insights, we develop simple Linear Programming and 0-1 Mixed Integer Linear Programming tests of SD efficiency. The advantage to the earlier efficiency tests is that the proposed approach explicitly accounts for diversification. Allowing for diversification can both improve the power of the empirical SD tests, and enable SD based portfolio optimization. A simple numerical example illustrates the SD efficiency tests. Discussion on the application potential and the future research directions concludes.

Suggested Citation

  • Timo Kuosmanen, 2001. "Stochastic Dominance Efficiency Tests under Diversification," Finance 0105001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0105001
    Note: Type of Document - Acrobat PDF; prepared on IBM PC; to print on HP; pages: 31 ; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0105/0105001.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Addae-Dapaah, Kwame & Tan Yong Hwee, Wilfred, 2009. "The unsung impact of currency risk on the performance of international real property investment," Review of Financial Economics, Elsevier, vol. 18(1), pages 56-65, January.
    2. Timo Kuosmanen, 2007. "Performance measurement and best-practice benchmarking of mutual funds: combining stochastic dominance criteria with data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 28(1), pages 71-86, October.
    3. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    4. V.-P. Heikkinen & & Timo Kuosmanen, 2002. "Stochastic Dominance Portfolio Analysis of Forestry Assets," Finance 0210002, University Library of Munich, Germany.
    5. Al-Khazali, Osamah & Lean, Hooi Hooi & Samet, Anis, 2014. "Do Islamic stock indexes outperform conventional stock indexes? A stochastic dominance approach," Pacific-Basin Finance Journal, Elsevier, vol. 28(C), pages 29-46.
    6. Post, G.T., 2001. "Testing for Stochastic Dominance with Diversification Possibilities," ERIM Report Series Research in Management ERS-2001-38-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.

    More about this item

    Keywords

    Stochastic Dominance; Protfolio Choice; Efficiency; Diversification; Mathematical Programming;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0105001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.