IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0404002.html
   My bibliography  Save this paper

Bayesian measures of explained variance and pooling in multilevel (hierarchical) models

Author

Listed:
  • Andrew Gelman

    (Department of Statistics, Columbia University)

  • Iain Pardoe

    (School of Business, University of Oregon)

Abstract

Explained variance (R^2) is a familiar summary of the fit of a linear regression and has been generalized in various ways to multilevel (hierarchical) models. The multilevel models we consider in this paper are characterized by hierarchical data structures in which individuals are grouped into units (which themselves might be further grouped into larger units), and there are variables measured on individuals and each grouping unit. The models are based on regression relationships at different levels, with the first level corresponding to the individual data, and subsequent levels corresponding to between-group regressions of individual predictor effects on grouping unit variables. We present an approach to defining R^2 at each level of the multilevel model, rather than attempting to create a single summary measure of fit. Our method is based on comparing variances in a single fitted model rather than comparing to a null model. In simple regression, our measure generalizes the classical adjusted R^2. We also discuss a related variance comparison to summarize the degree to which estimates at each level of the model are pooled together based on the level-specific regression relationship, rather than estimated separately. This pooling factor is related to the concept of shrinkage in simple hierarchical models. We illustrate the methods on a dataset of radon in houses within counties using a series of models ranging from a simple linear regression model to a multilevel varying-intercept, varying-slope model.

Suggested Citation

  • Andrew Gelman & Iain Pardoe, 2004. "Bayesian measures of explained variance and pooling in multilevel (hierarchical) models," Econometrics 0404002, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0404002
    Note: Type of Document - pdf; pages: 21
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0404/0404002.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioana Ramia & Malina Voicu, 2022. "Life Satisfaction and Happiness Among Older Europeans: The Role of Active Ageing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 160(2), pages 667-687, April.

    More about this item

    Keywords

    adjusted R-squared; Bayesian inference; hierarchical model; multilevel regression; partial pooling; shrinkage;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0404002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.