IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpco/9902001.html
   My bibliography  Save this paper

No Curse of Dimensionality for Contraction Fixed Points Even in the Worst Case

Author

Listed:
  • John Rust

    (Department of Economics Yale University)

  • Joseph Traub

    (Computer Science, Columbia University)

  • Henryk Wozniakowski

    (Computer Science, Columbia University)

Abstract

We consider the problem of computing approximations to fixed points of quasilinear contraction mappings defined on the space of continuous functions of $d$ variables. Our main emphasis is on large d. Examples of such mappings include the Bellman operator from the theory of dynamic programming. This paper proves that there exist deterministic algorithms for computing approximations to fixed points for some classes of quasilinear contraction mappings which are strongly tractable, i.e., in the worst case the number of function evaluations needed to compute an e-approximation to the solution at any finite number of points in its domain is bounded by C/e^p where both C and p are independent of d. This is done by using relations between the quasilinear contraction problem and the conditional expectation and approximation problems. The conditional expectation problem is equivalent to weighted multivariate integration. This allows us to apply recent proof technique and results on the strong tractability of weighted multivariate integration and approximation to establish strong tractability for the quasilinear fixed point problem. In particular, this holds when the fixed points belong to a Sobolev space for a specific weighted norm.

Suggested Citation

  • John Rust & Joseph Traub & Henryk Wozniakowski, 1999. "No Curse of Dimensionality for Contraction Fixed Points Even in the Worst Case," Computational Economics 9902001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpco:9902001
    Note: TeX file, Postscript version submitted, 40 pages
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/comp/papers/9902/9902001.ps.gz
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/comp/papers/9902/9902001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1985. "Stationary Equilibrium in a Market for Durable Assets," Econometrica, Econometric Society, vol. 53(4), pages 783-805, July.
    2. Tauchen, George & Hussey, Robert, 1991. "Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models," Econometrica, Econometric Society, vol. 59(2), pages 371-396, March.
    3. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    4. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    5. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    6. John Rust, 1997. "A Comparison of Policy Iteration Methods for Solving Continuous-State, Infinite-Horizon Markovian Decision Problems Using Random, Quasi-random, and Deterministic Discretizations," Computational Economics 9704001, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, George & Rust, John, 2000. "An empirical model of inventory investment by durable commodity intermediaries," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 52(1), pages 171-214, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willi Semmler & Lars Grüne, 2004. "Asset Pricing with Delayed Consumption Decisions," Computing in Economics and Finance 2004 59, Society for Computational Economics.
    2. John Rust, 1997. "A Comparison of Policy Iteration Methods for Solving Continuous-State, Infinite-Horizon Markovian Decision Problems Using Random, Quasi-random, and Deterministic Discretizations," Computational Economics 9704001, University Library of Munich, Germany.
    3. Michal Pakos & Hui Chen, 2008. "Asset Pricing with Uncertainty About the Long Run," 2008 Meeting Papers 295, Society for Economic Dynamics.
    4. Matthijs Lof, 2014. "GMM Estimation with Non-causal Instruments under Rational Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 279-286, April.
    5. Edmond, Chris & Weill, Pierre-Olivier, 2012. "Aggregate implications of micro asset market segmentation," Journal of Monetary Economics, Elsevier, vol. 59(4), pages 319-335.
    6. Lundtofte, Frederik & Wilhelmsson, Anders, 2013. "Risk premia: Exact solutions vs. log-linear approximations," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4256-4264.
    7. Kristensen, Dennis & Mogensen, Patrick K. & Moon, Jong Myun & Schjerning, Bertel, 2021. "Solving dynamic discrete choice models using smoothing and sieve methods," Journal of Econometrics, Elsevier, vol. 223(2), pages 328-360.
    8. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    9. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    10. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    11. Bravo, Francesco & Crudu, Federico, 2012. "Efficient bootstrap with weakly dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3444-3458.
    12. Hall, George & Rust, John, 2000. "An empirical model of inventory investment by durable commodity intermediaries," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 52(1), pages 171-214, June.
    13. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    14. Krusell, Per & Kuruscu, Burhanettin & Smith, Anthony Jr., 2002. "Time orientation and asset prices," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 107-135, January.
    15. Borovička, Jaroslav & Stachurski, John, 2021. "Stability of equilibrium asset pricing models: A necessary and sufficient condition," Journal of Economic Theory, Elsevier, vol. 193(C).
    16. Alexis Akira Toda, 2021. "Data-Based Automatic Discretization of Nonparametric Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1217-1235, April.
    17. Bound, John & Stinebrickner, Todd & Waidmann, Timothy, 2010. "Health, economic resources and the work decisions of older men," Journal of Econometrics, Elsevier, vol. 156(1), pages 106-129, May.
    18. Lars Grüne & Willi Semmler, 2007. "Asset pricing with dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 233-265, May.
    19. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    20. Burnside, Craig, 1998. "Solving asset pricing models with Gaussian shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 329-340, March.

    More about this item

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpco:9902001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.