IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/99-07-055.html
   My bibliography  Save this paper

Cumulant Dynamics in a Finite Population: Linkage Equilibrium Theory

Author

Listed:
  • Magnus Rattray
  • Jonathan L. Shapiro

Abstract

The evolution of a finite population at linkage equilibrium is described in terms of the dynamics of phenotype distribution cumulants. This provides a powerful method for describing evolutionary transients and we elucidate the relationship between the cumulant dynamics and the diffusion approximation. A separation of time-scales between the first and higher cumulants for low mutation rates is demonstrated in the diffusion limit and provides a significant simplification of the dynamical system. However, the diffusion limit may not be appropriate for strong selection as the standard Fisher-Wright model of genetic drift can break down in this case. Two novel examples of this effect are considered: we show that the dynamics may depend on the number of loci under strong directional selection and that environmental variance results in a reduced effective population size. We also consider a simple model of a changing environment which cannot be described by a diffusion equation and we derive the optimal mutation rate for this case.

Suggested Citation

  • Magnus Rattray & Jonathan L. Shapiro, 1999. "Cumulant Dynamics in a Finite Population: Linkage Equilibrium Theory," Working Papers 99-07-055, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:99-07-055
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Evolutionary dynamics; mutation-selection dynamics; theoretical population biology; diffusion approximation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:99-07-055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.