IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/97-05-037.html
   My bibliography  Save this paper

Fitness Distance Correlation Analysis: An Instructive Counterexample

Author

Listed:
  • Lee Altenberg

Abstract

Fitness distance correlation (FDC) has been offered as a summary statistic with apparent success in predicting the performance of genetic algorithms for global optimization. Here, a counterexample to Hamming-distance based FDC is examined for what it reveals about how GAs work. The counterexample is a fitness function that is ``GA-easy'' for global optimization, but which shows no relationship between fitness and Hamming distance from the global optimum. Fitness is a function that declines with the number of switches between 0 and 1 along the bitstring. The test function is ``GA-easy,'' in that a GA using only single-point crossover can find the global optimum with a sample on the order of $10^{-3}$ to $10^{-9}$ of the points in the search space, an efficiency which increases with the size of the search space. This result confirms the suspicion that predictors for genetic algorithm performance are vulnerable if they are based on arbitrary properties of the search space, and not the actual dynamics of the genetic algorithm. The test function's solvability by a GA is accurately predicted, however, by another property---its evolvability, the probability that the genetic operator produces offspring that are fitter than their parents. It is also accurately predicted by FDC that uses not Hamming distance, but a distance measure defined by the crossover operator itself. A comparison is made between Hamming-distance based FDC analysis, crossover-distance based FDC analysis, evolvability analysis, and other methods of predicting GA performance.

Suggested Citation

  • Lee Altenberg, 1997. "Fitness Distance Correlation Analysis: An Instructive Counterexample," Working Papers 97-05-037, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:97-05-037
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mak, Brenda & Blanning, Robert & Ho, Susanna, 2006. "Genetic algorithms in logic tree decision modeling," European Journal of Operational Research, Elsevier, vol. 170(2), pages 597-612, April.
    2. Andrea Bonaccorsi, 2011. "A Functional Theory of Technology and Technological Change," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 12, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:97-05-037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.