IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/96-08-060.html
   My bibliography  Save this paper

Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness

Author

Listed:
  • Cristopher Moore

Abstract

We study cellular automata where the state at each site is decided by a majority vote of the sites in its neighborhood. These are equivalent, for a restricted set of initial conditions, to non-zero probability transitions in single spin-flip dynamics of the Ising model at zero temperature. We show that in three or more dimensions these systems can simulate Boolean circuits of AND and OR gates, and are therefore P-complete. That is, predicting their state t time-steps in the future is at least as hard as any other problem that takes polynomial time on a serial computer. Therefore, unless a widely believed conjecture in computer science is false, it is impossible even with parallel computation to predict majority-vote cellular automata, or zero-temperature single spin-flip Ising dynamics, qualitatively faster than by explicit simulation.

Suggested Citation

  • Cristopher Moore, 1996. "Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness," Working Papers 96-08-060, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:96-08-060
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:96-08-060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.