IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/95-02-018.html
   My bibliography  Save this paper

Noise Sensitivity Signatures for Model Selection

Author

Listed:
  • Tal Grossman
  • Alan Lapedes

Abstract

We present a method for calculating the ``noise sensitivity signature'' of a learning algorithm which is based on scrambling the output of classes of various fractions of the training data. This signature can be used to indicate a good (or bad) match between the complexity of the classifier and the complexity of the data and hence to improve the predictive accuracy of a classification algorithm. Use of noise sensitivity signatures is distinctly different from other schemes to avoid overtraining, such as cross-validation, which uses only part of the training data, or various penalty functions, which are not data-adaptive. Noise sensitivity signature methods use all of the training data and are manifestly data-adaptive and non-parametric. They are well suited for situations with limited training data.

Suggested Citation

  • Tal Grossman & Alan Lapedes, 1995. "Noise Sensitivity Signatures for Model Selection," Working Papers 95-02-018, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:95-02-018
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:95-02-018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.