IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/94-02-007.html
   My bibliography  Save this paper

The Evolution of Evolvability in Genetic Programming

Author

Listed:
  • Lee Altenberg

Abstract

The notion of ``evolvability''---the ability of a population to produce variants fitter than any yet existing---is developed as it applies to genetic algortithms. A theoretical analysis of the dynamics of genetic programming predicts the existence of a novel, emergent selection phenomenon: the evolution of evolvability. This is produced by the proliferation, within programs, of blocks of code that have a higher chance of increasing fitness when added to programs. Selection can then come to mold the variational aspects of the way evolved programs are represented. A model of code proliferation within programs is analyzed to illustrate this effect. The mathematical and conceptual framework includes: the definition of evolvability as a measure of performance for genetic algorithms; application of Price's Covariance and Selection Theorem to show how the fitness function, representation, and genetic operators must interact to produce evolvability---namely, that genetic operators produce offspring with fitnesses specifically correlated with their parent's fitnesses; how blocks of code emerge as a new level of replicator, proliferating as a function of their ``constructional fitness,'' which is distinct from their schema fitness; and how programs may change from innovative code to conservative code as the populations mature. Several new selection techniques and genetic operators are proposed in order to give better control over the evolution of evolvability and improved evolutionary performance.

Suggested Citation

  • Lee Altenberg, 1994. "The Evolution of Evolvability in Genetic Programming," Working Papers 94-02-007, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:94-02-007
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Caminati, 2006. "Knowledge growth, complexity and the returns to R&D," Journal of Evolutionary Economics, Springer, vol. 16(3), pages 207-229, August.
    2. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Sotelo-Figeroa, Marco A. & Burke, Edmund K., 2017. "A methodology for determining an effective subset of heuristics in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 972-983.
    3. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    4. Rama Prasad Kanungo, 2004. "Genetic Algorithms: Genesis of Stock Evaluation," Experimental 0404007, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:94-02-007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.