IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/01-05-024.html
   My bibliography  Save this paper

Field Theory of a Reaction-Diffusion Model of Quasispecies Dynamics

Author

Listed:
  • Romualdo Pastor-Satorras
  • Ricard V. Solé

Abstract

RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost through a second-order phase transition, which has been dubbed the ``error catastrophe.'' Here we explore this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies model [J. Swetina and P. Schuster, Biophys. Chem. 16, 329 (1982)], a single-sharp-peak landscape. In analogy with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is constructed. The proposed field theory belongs to the same universality class than a conserved reaction-diffusion model previously proposed [F. van Wijland et al., Physica A251, 179 (1998)]. From the field theory, we obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present the error catastrophe from a new point of view and suggest that spatial degrees of freedom can modify several mean field predictions previously considered, leading to the definition of characteristic exponents that could be experimentally measurable.

Suggested Citation

  • Romualdo Pastor-Satorras & Ricard V. Solé, 2001. "Field Theory of a Reaction-Diffusion Model of Quasispecies Dynamics," Working Papers 01-05-024, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-05-024
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-05-024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.