IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/01-05.html
   My bibliography  Save this paper

Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy

Author

Listed:
  • Dean P. Foster
  • Robert A. Stine

Abstract

We develop and illustrate a methodology for fitting models to large, complex data sets. The methodology uses standard regression techniques that make few assumptions about the structure of the data. We accomplish this with three small modifications to stepwise regression: (1) We add interactions to capture non-linearities and indicator functions to capture missing values; (2) We exploit modern decision theoretic variable selection criteria; and (3) We estimate standard error using a conservative approach that works for heteroscedastic data. Omitting any one of these modifications leads to poor performance. We illustrate our methodology by predicting the onset of personal bankruptcy among users of credit cards. This applications presents many challenges, ranging from the rare frequency of bankruptcy to the size of the available database. Only 2,244 bankruptcy events appear among some 3 million months of customer activity. To predict these, we begin with 255 features to which we add missing value indicators and pairwise interactions that expand to a set of over 67,000 potential predictors. From these, our method selects a model with 39 predictors chosen by sequentially comparing estimates of their significance to a series of thresholds. The resulting model not only avoids over-fitting the data, it also predicts well out of sample. To find half of the 1800 bankruptcies hidden in a validation sample of 2.3 million observations, one need only search the 8500 cases having the largest model predictions.

Suggested Citation

  • Dean P. Foster & Robert A. Stine, 2001. "Variable Selection in Data Mining: Building a Predictive Model for Bankruptcy," Center for Financial Institutions Working Papers 01-05, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:01-05
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/01/0105.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    2. Barrios, Erniel B. & Mina, Christian D., 2009. "Profiling Poverty with Multivariate Adaptive Regression Splines," Discussion Papers DP 2009-29, Philippine Institute for Development Studies.
    3. Alexandra Schwarz, 2011. "Measurement, Monitoring, and Forecasting of Consumer Credit Default Risk - An Indicator Approach Based on Individual Payment Histories," Schumpeter Discussion Papers sdp11004, Universitätsbibliothek Wuppertal, University Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:01-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.