IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa14p25.html
   My bibliography  Save this paper

Forecasting with Bayesian Global Vector Autoregressions

Author

Listed:
  • Florian Huber
  • Jesus Crespo-Cuaresma
  • Martin Feldkircher

Abstract

This paper puts forward a Bayesian version of the global vector autoregressive model (B-GVAR) that accommodates international linkages across countries in a system of vec- tor autoregressions. We compare the predictive performance of B-GVAR models for the one- and four-quarter ahead forecast horizon for standard macroeconomic variables (real GDP, inflation, the real exchange rate and interest rates). Our results show that taking international linkages into account improves forecasts of inflation, real GDP and the real exchange rate, while for interest rates forecasts of univariate benchmark models remain difficult to beat. Our Bayesian version of the GVAR model outperforms forecasts of the standard cointegrated VAR for practically all variables and at both forecast horizons. The comparison of prior elicitation strategies indicates that the use of the stochastic search variable selection (SSVS) prior tends to improve out-of-sample predictions systematically. This finding is confirmed by density forecast measures, for which the predictive ability of the SSVS prior is the best among all priors entertained for all variables at all forecasting horizons.

Suggested Citation

  • Florian Huber & Jesus Crespo-Cuaresma & Martin Feldkircher, 2014. "Forecasting with Bayesian Global Vector Autoregressions," ERSA conference papers ersa14p25, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa14p25
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa14/e140826aFinal00025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia, 2009. "Comments on "Forecasting economic and financial variables with global VARs"," International Journal of Forecasting, Elsevier, vol. 25(4), pages 684-686, October.
    2. Eickmeier, Sandra & Ng, Tim, 2015. "How do US credit supply shocks propagate internationally? A GVAR approach," European Economic Review, Elsevier, vol. 74(C), pages 128-145.
    3. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    4. Fratzscher, Marcel & Chudik, Alexander, 2010. "Identifying the Global Transmission of the 2007-09 Financial Crisis in a GVAR Model," CEPR Discussion Papers 8093, C.E.P.R. Discussion Papers.
    5. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    6. Pesaran, Mohammad Hashem & Holly, Sean & Dees, Stephane & Smith, L. Vanessa, 2007. "Long Run Macroeconomic Relations in the Global Economy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-20.
    7. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    8. Garratt, Anthony & Lee, Kevin & Pesaran, M. Hashem & Shin, Yongcheol, 2012. "Global and National Macroeconometric Modelling: A Long-Run Structural Approach," OUP Catalogue, Oxford University Press, number 9780199650460.
    9. Luis J. Álvarez & Fernando C. Ballabriga, 1994. "BVAR models in the context of cointegration: A Monte Carlo experiment," Working Papers 9405, Banco de España.
    10. Feldkircher, Martin, 2015. "A global macro model for emerging Europe," Journal of Comparative Economics, Elsevier, vol. 43(3), pages 706-726.
    11. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    12. M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2007. "What if the UK or Sweden had joined the euro in 1999? An empirical evaluation using a Global VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 55-87.
    13. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
    14. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    15. Han, Fei & Hee Ng, Thiam, 2011. "ASEAN-5 Macroeconomic Forecasting Using a GVAR Model," Working Papers on Regional Economic Integration 76, Asian Development Bank.
    16. Chudik, Alexander & Fratzscher, Marcel, 2011. "Identifying the global transmission of the 2007-2009 financial crisis in a GVAR model," European Economic Review, Elsevier, vol. 55(3), pages 325-339, April.
    17. Matthew Greenwood‐Nimmo & Viet Hoang Nguyen & Yongcheol Shin, 2012. "Probabilistic forecasting of output growth, inflation and the balance of trade in a GVAR framework," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(4), pages 554-573, June.
    18. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    19. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    20. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    21. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    22. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    23. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    24. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Rejoinder to comments on forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 703-715, October.
    25. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    26. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    27. Ms. Silvia Sgherri & Mr. Alessandro Galesi, 2009. "Regional Financial Spillovers Across Europe: A Global VAR Analysis," IMF Working Papers 2009/023, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Feldkircher & Thomas Gruber & Florian Huber, 2017. "Spreading the word or reducing the term spread? Assessing spillovers from euro area monetary policy," Department of Economics Working Papers wuwp248, Vienna University of Economics and Business, Department of Economics.
    2. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    3. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    4. Huber, Florian, 2014. "Density Forecasting using Bayesian Global Vector Autoregressions with Common Stochastic Volatility," Department of Economics Working Paper Series 179, WU Vienna University of Economics and Business.
    5. Paredes, Joan, 2017. "Subsidising car purchases in the euro area: any spill-over on production?," Working Paper Series 2094, European Central Bank.
    6. Feldkircher, Martin, 2015. "A global macro model for emerging Europe," Journal of Comparative Economics, Elsevier, vol. 43(3), pages 706-726.
    7. Huber, Florian & Punzi, Maria Teresa, 2017. "The shortage of safe assets in the US investment portfolio: Some international evidence," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 318-336.
    8. Dovern, Jonas & Huber, Florian, 2015. "Global prediction of recessions," Economics Letters, Elsevier, vol. 133(C), pages 81-84.
    9. Markus Eller & Florian Huber & Helene Schuberth, 2016. "Understanding the drivers of capital flows into the CESEE countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 79-104.
    10. Ludmila Fadejeva & Martin Feldkircher & Thomas Reininger, 2014. "International Transmission of Credit Shocks: Evidence from Global Vector Autoregression Model," Working Papers 2014/05, Latvijas Banka.
    11. Markus Eller & Martin Feldkircher & Florian Huber, 2017. "How would a fiscal shock in Germany affect other European countries? Evidence from a Bayesian GVAR model with sign restrictions," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 54-77.
    12. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    13. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    14. Florian Martin & Jesús Crespo Cuaresma, 2017. "Weighting schemes in global VAR modelling: a forecasting exercise," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 45-56, March.
    15. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
    16. Mihaela SIMIONESCU, 2015. "Is Africa’s current growth reducing inequality? Evidence from some selected african countries," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 3(1), pages 68-74, June.
    17. Feldkircher, Martin & Huber, Florian, 2016. "The international transmission of US shocks—Evidence from Bayesian global vector autoregressions," European Economic Review, Elsevier, vol. 81(C), pages 167-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2014. "Forecasting with Bayesian Global Vector Autoregressive Models: A Comparison of Priors," Working Papers 189, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.
    3. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    4. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    5. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    6. Ludmila Fadejeva & Martin Feldkircher & Thomas Reininger, 2014. "International Transmission of Credit Shocks: Evidence from Global Vector Autoregression Model," Working Papers 2014/05, Latvijas Banka.
    7. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.
    8. Chisiridis, Konstantinos & Mouratidis, Kostas & Panagiotidis, Theodore, 2022. "The north-south divide, the euro and the world," Journal of International Money and Finance, Elsevier, vol. 121(C).
    9. Sona Benecka & Ludmila Fadejeva & Martin Feldkircher, 2018. "Spillovers from Euro Area Monetary Policy: A Focus on Emerging Europe," Working Papers 2018/04, Latvijas Banka.
    10. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    11. Feldkircher, Martin & Huber, Florian, 2016. "The international transmission of US shocks—Evidence from Bayesian global vector autoregressions," European Economic Review, Elsevier, vol. 81(C), pages 167-188.
    12. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    13. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    14. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    15. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    16. Cao, Zheng & Li, Gang & Song, Haiyan, 2017. "Modelling the interdependence of tourism demand: The global vector autoregressive approach," Annals of Tourism Research, Elsevier, vol. 67(C), pages 1-13.
    17. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    18. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    19. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    20. Konstantinos N. Konstantakis & Panayotis G. Michaelides & Livia Chatzieleftheriou & Arsenios‐Georgios N. Prelorentzos, 2022. "Crisis and the Chinese miracle: A network—GVAR model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 900-921, July.
    21. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
    22. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.

    More about this item

    Keywords

    Global vector autoregressions; forecasting; prior sensitivity analysis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • O54 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Latin America; Caribbean

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa14p25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.