Predicting football outcomes from Spanish league using machine learning models
Author
Abstract
Suggested Citation
Download full text from publisher
More about this item
Keywords
predicting football outcomes; machine learning; betting; adaboost; random forest; xgboost; catboost; ranked probability score; auc; permutation feature importance;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
- Z29 - Other Special Topics - - Sports Economics - - - Other
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-12-12 (Big Data)
- NEP-CMP-2022-12-12 (Computational Economics)
- NEP-FOR-2022-12-12 (Forecasting)
- NEP-SPO-2022-12-12 (Sports and Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2021-22. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.