IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2021-18.html
   My bibliography  Save this paper

Enhanced Index Replication Based on Smart Beta and Tail-Risk Asset Allocation

Author

Listed:
  • Kamil Korzeń

    (Faculty of Economic Sciences, University of Warsaw)

  • Robert Ślepaczuk

    (Faculty of Economic Sciences, University of Warsaw)

Abstract

The following research paper’s main goal is to create an algorithmically managed ETF, which tracks the SPX index and provides a Smart Beta exposure. Authors apply the following simple index replication methods: partial correlation, non-negative least squares, beta coefficient, and dynamic time warping. First, authors are trying to reverse engineer the Index Tracking process in an automated and fair manner - taking into account e.g. transaction costs. Additionally, authors apply a constraint to the total number of assets used in the replication process, which is limited to the certain N. Then, authors develop a Smart Beta framework based on limiting the negative tail-risk. The positive excess return (alpha) is captured and used to compensate for the underperformance of the replicated Index or paid in a form of a dividend. Moreover, with the enhancement methods applied (Kurtosis/Skewness and Excess Return Cushion (ERC) enhancements), the authors’ main goal is to keep the Tracking Error (TE) on a fixed level, although with a significant overweight on the Positive TE and underweight on the Negative TE. In the research paper, the data from 04-Jan-2016 to 31-Dec-2020 is used as the training window, while the first quarter of the year 2021 (Q1 2021) is used as an out-of-sample and out-of-time testing period. Additionally, the authors measure the replicated Index’s performance compared to the SPY, VOO, and IVV ETFs. Authors find a piece of empirical evidence that it is possible to track the SPX Index within the limits of 4-5% TE with the limited number of assets. Moreover, after the implementation of alpha accumulation, the authors outperform the benchmark ETFs in terms of minimizing the TE but did not succeed in providing statistically significant returns better than the SPX Index.

Suggested Citation

  • Kamil Korzeń & Robert Ślepaczuk, 2021. "Enhanced Index Replication Based on Smart Beta and Tail-Risk Asset Allocation," Working Papers 2021-18, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2021-18
    as

    Download full text from publisher

    File URL: https://www.wne.uw.edu.pl/index.php/download_file/6635/
    File Function: First version, 2021
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jinhwan & Cho, Hoon & Seok, Sangik, 2023. "Liquidity risk, return performance, and tracking error: Synthetic vs. Physical ETFs," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).

    More about this item

    Keywords

    exchange-traded funds; enhanced index replication methods; smart beta; asset allocation; partial correlation; non-negative least squares; dynamic time warping;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2021-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.