IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/85.html
   My bibliography  Save this paper

Efficient Consumption Set Under Recursive Utility and Unknown Beliefs

Author

Listed:
  • Ali Lazrak
  • Fernando Zapatero

Abstract

In a context of complete financial markets where asset prices follow Ito's processes, we characterize the set of consumption processes which are optimal for a given stochastic differential utility (e.g. Duffie and Epstein (1992)) when beliefs are unknown. Necessary and sufficient conditions for the efficiency of a consumption process, consists of the existence of a solution to a quadratic backward stochastic differential equation and a martingale condition. We study the efficiency condition in the case of a class of homothetic stochastic differential utilities and derive some results for those particular cases. In a Markovian context, this efficiency condition becomes a partial differential equation.

Suggested Citation

  • Ali Lazrak & Fernando Zapatero, 2002. "Efficient Consumption Set Under Recursive Utility and Unknown Beliefs," Research Paper Series 85, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:85
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp85.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    3. Ali Lazrak & Marie-Claire Quenez, 2003. "A generalized stochastic differential utility," Post-Print hal-00485718, HAL.
    4. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    5. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    6. Chiappori, P. -A. & Ekeland, I. & Kubler, F. & Polemarchakis, H. M., 2004. "Testable implications of general equilibrium theory: a differentiable approach," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 105-119, February.
    7. Bick, Avi, 1987. "On the Consistency of the Black-Scholes Model with a General Equilibrium Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 259-275, September.
    8. Cuoco, Domenico & Zapatero, Fernando, 2000. "On the Recoverability of Preferences and Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 417-431.
    9. Duffie, Darrell & Skiadas, Costis, 1994. "Continuous-time security pricing : A utility gradient approach," Journal of Mathematical Economics, Elsevier, vol. 23(2), pages 107-131, March.
    10. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    11. A. Lazrak & J.P. DÊcamps, 2000. "A martingale characterization of equilibrium asset price processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(1), pages 207-213.
    12. Ali Lazrak & Marie Claire Quenez, 2003. "A Generalized Stochastic Differential Utility," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 154-180, February.
    13. He, Hua & Leland, Hayne, 1993. "On Equilibrium Asset Price Processes," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 593-617.
    14. Bick, Avi, 1990. "On Viable Diffusion Price Processes of the Market Portfolio," Journal of Finance, American Finance Association, vol. 45(2), pages 673-689, June.
    15. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firoozi, Fathali, 2006. "On the martingale property of economic and financial instruments," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 87-96.
    2. Fabio Antonelli & Carlo Mancini, 2016. "Consumption optimization for recursive utility in a jump-diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 293-310, November.
    3. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    4. Nobuhiro Nakamura, 2004. "Numerical Approach to Asset Pricing Models with Stochastic Differential Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 267-300, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    2. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    3. Nobuhiro Nakamura, 2004. "Numerical Approach to Asset Pricing Models with Stochastic Differential Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 267-300, September.
    4. Patrick Beissner & Qian Lin & Frank Riedel, 2020. "Dynamically consistent alpha‐maxmin expected utility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1073-1102, July.
    5. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    6. Schroder, Mark & Skiadas, Costis, 2003. "Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 155-202, December.
    7. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    8. Kyoung Jin Choi & Hyeng Keun Koo & Do Young Kwak, 2004. "Optimal Stopping of Active Portfolio Management," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 93-126, May.
    9. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2024. "Optimal consumption for recursive preferences with local substitution — the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    10. Dejian Tian & Weidong Tian, 2016. "Comparative statics under κ-ambiguity for log-Brownian asset prices," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(4), pages 361-378, December.
    11. Wang, Tianxiao & Yong, Jiongmin, 2015. "Comparison theorems for some backward stochastic Volterra integral equations," Stochastic Processes and their Applications, Elsevier, vol. 125(5), pages 1756-1798.
    12. Ali Lazrak, 2005. "Generalized stochastic differential utility and preference for information," Papers math/0503579, arXiv.org.
    13. Yong, Jiongmin, 2006. "Backward stochastic Volterra integral equations and some related problems," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 779-795, May.
    14. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    15. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    16. Carole Bernard & Shaolin Ji & Weidong Tian, 2013. "An optimal insurance design problem under Knightian uncertainty," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 99-124, November.
    17. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    18. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    19. Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969, arXiv.org.
    20. Knut K. Aase & Petter Bjerksund, 2021. "The Optimal Spending Rate versus the Expected Real Return of a Sovereign Wealth Fund," JRFM, MDPI, vol. 14(9), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.