IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/21.html
   My bibliography  Save this paper

A Minimal Share Market Model with Stochastic Volatility

Author

Abstract

The paper describes a continuous time share market model with a minimal number of factors. These factors are powers of Bessel processes. The asset prices are formed by ratios of the factors and have consequently leptokurtic return distributions. In this framework stochastic volatility with properties that are similar to those actually observed arises naturally. The model generates for the market index the well-known leverage effect due to negative correlation between the index and its volatility. It also incorporates possible default of an asset and thus models credit risk.

Suggested Citation

  • Eckhard Platen, 1999. "A Minimal Share Market Model with Stochastic Volatility," Research Paper Series 21, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Elliott & Eckhard Platen, 1999. "Hidden Markov Chain Filtering for Generalised Bessel Processes," Research Paper Series 23, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Platen, Eckhard, 2000. "Risk premia and financial modelling without measure transformation," SFB 373 Discussion Papers 2000,92, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Keywords

    stochastic volatility; leverage effect; Bessel process; Student t distribution; minimal market model; credit risk;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.