IDEAS home Printed from https://ideas.repec.org/p/use/tkiwps/0908.html
   My bibliography  Save this paper

Estimating and Forecasting Asset Volatility and Its Volatility: A Markov-Switching Range Model

Author

Listed:
  • J. Piplack

Abstract

This paper proposes a new model for modeling and forecasting the volatility of asset markets. We suggest to use the log range defined as the natural logarithm of the difference of the maximum and the minimum price observed for an asset within a certain period of time, i.e. one trading week. There is clear evidence for a regime-switching behavior of the volatility of the S&P500 stock market index in the period from 1962 until 2007. A Markov-switching model is found to fit the data significantly better than a linear model, clearly distinguishing periods of high and low volatility. A forecasting exercise leads to promising results by showing that some specifications of the model are able to clearly decrease forecasting errors with respect to the linear model in an absolute and mean square sense.

Suggested Citation

  • J. Piplack, 2009. "Estimating and Forecasting Asset Volatility and Its Volatility: A Markov-Switching Range Model," Working Papers 09-08, Utrecht School of Economics.
  • Handle: RePEc:use:tkiwps:0908
    as

    Download full text from publisher

    File URL: https://dspace.library.uu.nl/bitstream/handle/1874/309544/09_08.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenting Liu & Zhaozhong Gui & Guilin Jiang & Lihua Tang & Lichun Zhou & Wan Leng & Xulong Zhang & Yujiang Liu, 2023. "Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data," Papers 2309.16196, arXiv.org.

    More about this item

    Keywords

    Volatility; range; Markov-switching; GARCH; forecasting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:use:tkiwps:0908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marina Muilwijk (email available below). General contact details of provider: https://edirc.repec.org/data/eiruunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.