IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1097.html
   My bibliography  Save this paper

Exact tests for correlation and for the slope in simple linear regressions without making assumptions

Author

Listed:
  • Karl Schlag

Abstract

We present an exact test for whether two random variables that have known bounds on their support are negatively correlated. The alternative hypothesis is that they are not negatively correlated. No assumptions are made on the underlying distributions. We show by example that the Spearman rank correlation test as the competing exact test of correlation in nonparametric settings rests on an additional assumption on the data generating process without which it is not valid as a test for correlation. We then show how to test for the significance of the slope in a linear regression analysis that invovles a single independent variable and where outcomes of the dependent variable belong to a known bounded set.

Suggested Citation

  • Karl Schlag, 2008. "Exact tests for correlation and for the slope in simple linear regressions without making assumptions," Economics Working Papers 1097, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:1097
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1097.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gossner, Olivier & Schlag, Karl H., 2013. "Finite-sample exact tests for linear regressions with bounded dependent variables," Journal of Econometrics, Elsevier, vol. 177(1), pages 75-84.
    2. Karl Schlag & Olivier Gossner, 2010. "Finite sample nonparametric tests for linear regressions," Economics Working Papers 1212, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Keywords

    Correlation test; exact hypothesis testing; distribution-free; nonparametric; simple linear regression;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.