IDEAS home Printed from https://ideas.repec.org/p/una/unccee/wp1709.html
   My bibliography  Save this paper

sEMG Wavelet-based Indices predicts Muscle Power Loss during Dynamic Contractions (abstract only)

Author

Listed:
  • Miriam González Izal

    (Departamento de Ingeniería Eléctrica y Electrónica, Universidad Pública de Navarra)

  • et al.

Abstract

Purpose: To compare the sensitivity to estimate acute exercise-induced changes on muscle power output during a dynamic fatiguing protocol from new surface electromyography (sEMG) indices based on the discrete wavelet transform, as well as from amplitude and spectral indices of muscle fatigue (i.e. mean average voltage, median frequency and ratios between spectral moments). Methods: 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. sEMG was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were computed. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. Results: The new wavelet indices as a single parameter predictor accounted for 46.6% of the performance variance of changes in muscle power and the log FInsm5 and MAV as a two factor combination predictor accounted for 49.8%. On the other hand, they showed the highest robustness in presence of additive white Gaussian noise for different signal to noise ratios (SNRs). Conclusions: The sEMG wavelet indices proposed may be a useful tool to map changes in muscle power output during dynamic high-loading fatiguing task.

Suggested Citation

  • Miriam González Izal & et al., 2009. "sEMG Wavelet-based Indices predicts Muscle Power Loss during Dynamic Contractions (abstract only)," Faculty Working Papers 17/09, School of Economics and Business Administration, University of Navarra.
  • Handle: RePEc:una:unccee:wp1709
    as

    Download full text from publisher

    File URL: http://www.unav.edu/documents/10174/6546776/1271783171_WP_UNAV_17_08_abstract.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:una:unccee:wp1709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.unav.edu/web/facultad-de-ciencias-economicas-y-empresariales .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.