IDEAS home Printed from https://ideas.repec.org/p/una/unccee/wp0120.html
   My bibliography  Save this paper

WP02/20 Datos de mortalidad diarios durante la crisis del COVID-19: una propuesta de mejora

Author

Listed:
  • Juan Equiza-Goñi

    (University of Navarra)

Abstract

Cuando una crisis epidemiológica recrudece, el exceso de mortalidad publicado diariamente por MoMo (CNE-Instituto de Salud Carlos III) está gravemente sesgado a la baja. La razón es que el retraso habitual en la notificación de las defunciones se prolonga precisamente en esos momentos en los que dichas estimaciones tienen mayor relevancia social y epidemiológica. Proponemos ajustar los datos diarios (o “en tiempo real†) aplicando proyecciones en el futuro de revisiones observadas de datos ya publicados. Dichas revisiones suman defunciones que se notifican con retraso a excesos de mortalidad ya anunciados. Aplicamos este método a los excesos de mortalidad publicados por MoMo entre el 15 de abril y el 25 de mayo de 2020 durante la crisis del COVID-19 en España. Las correcciones basadas en los modelos polinómicos reducen entre un 18 y un 25% la raíz del error cuadrático medio (RMSE) de los datos “en tiempo real†.

Suggested Citation

  • Juan Equiza-Goñi, 2020. "WP02/20 Datos de mortalidad diarios durante la crisis del COVID-19: una propuesta de mejora," Faculty Working Papers 01/20, School of Economics and Business Administration, University of Navarra.
  • Handle: RePEc:una:unccee:wp0120
    as

    Download full text from publisher

    File URL: http://www.unav.edu/documents/10174/6546776/UNAV_0220/73afd8b1-6cbd-23c2-6ebb-815d40468827
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    monitoreo epidemiológico; coronavirus; “nowcasting†; epidemia; epidemiología; mortalidad; SAS-CoV-2; enfermedades transmisibles;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:una:unccee:wp0120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.unav.edu/web/facultad-de-ciencias-economicas-y-empresariales .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.