IDEAS home Printed from https://ideas.repec.org/p/ulp/sbbeta/2021-53.html
   My bibliography  Save this paper

Downstream Space Activities in the New Space Era: Paradigm Shift and Evaluation Challenges

Author

Listed:
  • Kenza Bousedra

Abstract

New Space refers to the recent opening-up of the space sector to private companies. The liberalization of space activities, which coincides with the digital evolution of the economy, is associated with the rapid expansion of the downstream space segment, i.e., space-related commercial applications and services. In this paper, we explore the role of commercial space, and more specifically downstream activities, in the change occurring in the space sector. We discuss the implications of this trend for the measurement of commercial space and space policy. After a literature review that points out the space sector evaluation challenges, we analyze New Space and the service-oriented growth of commercial space. We finally propose a theoretical reflection on New Space as a shift toward a demand-pull paradigm. We conclude by discussing the interest of the dynamic approach to understand and evaluate commercial space in this new context.

Suggested Citation

  • Kenza Bousedra, 2021. "Downstream Space Activities in the New Space Era: Paradigm Shift and Evaluation Challenges," Working Papers of BETA 2021-53, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  • Handle: RePEc:ulp:sbbeta:2021-53
    as

    Download full text from publisher

    File URL: http://beta.u-strasbg.fr/WP/2021/2021-53.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Barbaroux, 2016. "The Metamorphosis Of The World Space Economy: Investigating Global Trends And National Differences Among Major Space Nations' Market Structure," Post-Print hal-03223685, HAL.
    2. Robinson, Douglas K.R. & Mazzucato, Mariana, 2019. "The evolution of mission-oriented policies: Exploring changing market creating policies in the US and European space sector," Research Policy, Elsevier, vol. 48(4), pages 936-948.
    3. Charles I. Jones & Christopher Tonetti, 2020. "Nonrivalry and the Economics of Data," American Economic Review, American Economic Association, vol. 110(9), pages 2819-2858, September.
    4. Flavio Calvino & Chiara Criscuolo, 2019. "Business dynamics and digitalisation," OECD Science, Technology and Industry Policy Papers 62, OECD Publishing.
    5. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    6. Mowery, David C., 2010. "Military R&D and Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1219-1256, Elsevier.
    7. Rosenberg, Nathan, 1974. "Science, Invention and Economic Growth," Economic Journal, Royal Economic Society, vol. 84(333), pages 90-108, March.
    8. Pierre Barbaroux, 2016. "The metamorphosis of the world space economy: investigating global trends and national differences among major space nations’ market structure," Journal of Innovation Economics, De Boeck Université, vol. 0(2), pages 9-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Barbaroux & Victor Santos Paulino, 2022. "Why do motives matter? A demand-based view of the dynamics of a complex products and systems (CoPS) industry," Journal of Evolutionary Economics, Springer, vol. 32(4), pages 1175-1204, September.
    2. Zhou, Qin & Cheng, Changgao & Fang, Zhou & Zhang, Hengquan & Xu, Yining, 2024. "How does the development of the digital economy affect innovation output? Exploring mechanisms from the perspective of regional innovation systems," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 1-17.
    3. Ping Li & Guocai Yu, 2009. "The dynamics of China’s expenditure on R&D," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(1), pages 97-109, March.
    4. Pierre Barbaroux, 2020. "The transformation of the defense innovation system: knowledge bases, disruptive technologies, and operational capabilities," Post-Print hal-03223583, HAL.
    5. Horii, Ryo, 2012. "Wants and past knowledge: Growth cycles with emerging industries," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 220-238.
    6. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    7. Ciaffi, Giovanna & Deleidi, Matteo & Di Bucchianico, Stefano, 2024. "Stagnation despite ongoing innovation: Is R&D expenditure composition a missing link? An empirical analysis for the US (1948–2019)," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    8. Simone Vannuccini & Ekaterina Prytkova, 2021. "Artificial Intelligence’s New Clothes? From General Purpose Technology to Large Technical System," SPRU Working Paper Series 2021-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    9. Andrin Spescha & Martin Woerter, 2021. "Research and development as an initiator of fixed capital investment," Journal of Evolutionary Economics, Springer, vol. 31(1), pages 117-145, January.
    10. Almas Heshmati & Hyesung Kim, 2011. "The R&D and productivity relationship of Korean listed firms," Journal of Productivity Analysis, Springer, vol. 36(2), pages 125-142, October.
    11. Mario Coccia, 2018. "Socioeconomic driving forces of scientific research," Papers 1806.05028, arXiv.org.
    12. Cong, Lin William & Wei, Wenshi & Xie, Danxia & Zhang, Longtian, 2022. "Endogenous growth under multiple uses of data," Journal of Economic Dynamics and Control, Elsevier, vol. 141(C).
    13. Scott Stern, 1999. "Do Scientists Pay to Be Scientists?," NBER Working Papers 7410, National Bureau of Economic Research, Inc.
    14. Deleidi, Matteo & Mazzucato, Mariana, 2021. "Directed innovation policies and the supermultiplier: An empirical assessment of mission-oriented policies in the US economy," Research Policy, Elsevier, vol. 50(2).
    15. Daron Acemoglu & Joshua Linn, 2004. "Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 1049-1090.
    16. Yir-Hueih Luh & Kuo-Chen Shih, 2006. "International spillovers and East Asian growth: the experience of Japan, Korea and Taiwan," Applied Economics Letters, Taylor & Francis Journals, vol. 13(11), pages 745-750.
    17. Coccia, Mario, 2019. "Why do nations produce science advances and new technology?," Technology in Society, Elsevier, vol. 59(C).
    18. Joshua Gans & Scott Stern, 2003. "When does funding research by smaller firms bear fruit?: Evidence from the SBIR program," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 12(4), pages 361-384.
    19. Mukherjee, Arijit & Stern, Scott, 2009. "Disclosure or secrecy? The dynamics of Open Science," International Journal of Industrial Organization, Elsevier, vol. 27(3), pages 449-462, May.
    20. Zhou, Zhongsheng & Li, Zhuo & Du, Shanzhong & Cao, June, 2024. "Robot adoption and enterprise R&D manipulation: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    More about this item

    Keywords

    New Space; space sector; downstream space; satellite-based services; demand-pull.;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • L8 - Industrial Organization - - Industry Studies: Services
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulp:sbbeta:2021-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge The email address of this maintainer does not seem to be valid anymore. Please ask the person in charge to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/bestrfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.