IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-209408.html
   My bibliography  Save this paper

Essays on econometrics of panel data and treatment models

Author

Listed:
  • Gianluca Papa

Abstract

In this thesis, I apply the sophisticated tools made available by the econometrics of panel data and treatment models to a range of different issues. In the first Chapter, an ECM model is used to test on the existence of financing constraints in firms’ investment and R&D, taken a proxy for the efficiency of market institutions and governance rules in different countries. In the second chapter we test an agency model linking pay-performance contracts of CEOS to the financial situation of a firm by using a UK panel data. In the third chapter I use a sophisticated treatment model to evaluate the effectiveness of Italian public subsidies to R&D. Finally, in the fourth chapter I try to evaluate the efficiency of Italian regional systems of public healthcare by controlling for socio-economic factors and quality of healthcare in a composite model using panel data estimation and efficient frontier techniques. The first Chapter analyzes the investment behavior of a sample of R&D intensive firms which are quoted on the stock market from USA, UK and Japan for the period 1990-1998. By using an error correction model we test the elasticity of investment and R&D to cash flow in these countries to see by which measure different market institutions and corporate governance rules affects the cost of external financing. Contrary to previous studies, we find significant differences in the sensitivity to cash flow of the two types of investment, with R&D expenditure being much less sensitive than ordinary investment. This is not surprising given the more long-term nature of R&D expenditures. For what concerns the comparison between the different systems/countries, the USA stock markets confirms as the most efficient market providing outside financing at a much lower cost compared to other markets, especially for young, smaller firms. The second Chapter is a joint work with Biagio Speciale. It uses the data on a panel of quoted UK firms over the period 1995–2002 to study the effects of financial leverage on managerial compensation. The change in the investors’ expectations that caused the recent collapse of the stock market tech bubble is a perfect example of natural experiment that has been used as a source of plausibly exogenous variation in the firm’s debt. The estimates show that pay-for-performance sensitivity is increasing in financial leverage, with the exception of the 10% most levered firms, giving rise at the end to a non-linear (inverted U-shape) relationship between the two variables. The chapter includes also a theoretical model accounting for this relationship where an higher leverage increases both the expected returns and the expected variance of investment returns: the first effect (determining increased pay-performance sensitivity) prevails for low leverage values and the second effect (determining decreased pay-performance sensitivity) prevails for high leverage values. The third Chapter undertakes an empirical estimation of the additionality of public funding on both the propensity to initiate R&D activity and the intensity of R&D spending of Italian enterprises for the period 1998-2000, using data from the Third Community Innovation Survey and from firms' financial accounts. The chosen methodology (Endogenous Switching Type II-Tobit) takes into account the possibility that decisions about both starting an R&D activity (sample selection effect) and applying for/obtaining public funding (essential heterogeneity) are influenced by private knowledge of enterprises' idiosyncratic propensities in R&D spending. The present analysis shows that both these effects are indeed important and that they contribute to explain most of the additionality found with less sophisticated models. The fourth Chapter investigates the underlying causes of variability of public health expenditure per capita (SSPC henceforth) between Italian regions. A fixed-effect panel data estimate on the SSPC (for the period 1997-2006) is used in the first part of the paper to account for regional differences in terms of physical, demographic, socio-economic characteristics and in terms of other variables that affect demand and supply of health services. In the second part, we take the ‘adjusted’ SSPC and proceed to estimate an "efficient production function" of the quality of health services through Data Envelopment Analysis. This procedure allows us to separate the share of expenditure used for the improvement of the quality from the one that can be traced only to an inefficient use of financial resources. A comparison of regional SSPC after factoring out the socio-economic factors and the quality of healthcare shows that big differences still remain and are even exacerbated, signalling big pockets of inefficiency and correspondingly a huge potential for cost savings. Finally, a preliminary analysis shows a positive correlation between the efficiency of regional public spending in healthcare and the level of social capital.

Suggested Citation

  • Gianluca Papa, 2013. "Essays on econometrics of panel data and treatment models," ULB Institutional Repository 2013/209408, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/209408
    Note: Degree: Doctorat en Sciences économiques et de gestion
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/209408/5/b5372ed1-bc39-46b3-80d0-469262b248de.txt
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/209408/2/90ce1f5b-dba3-4519-bb08-1e7b3fe416ad.txt
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/209408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.