Author
Abstract
This thesis is divided in four chapters. The two first chapters introduce a parametric quantile-based estimation method of univariate heavy-tailed distributions and elliptical distributions, respectively. If one is interested in estimating the tail index without imposing a parametric form for the entire distribution function, but only on the tail behaviour, we propose a multivariate Hill estimator for elliptical distributions in chapter three. In the first three chapters we assume an independent and identically distributed setting, and so as a first step to a dependent setting, using quantiles, we prove in the last chapter the asymptotic normality of marginal sample quantiles for stationary processes under the S-mixing condition. The first chapter introduces a quantile- and simulation-based estimation method, which we call the Method of Simulated Quantiles, or simply MSQ. Since it is based on quantiles, it is a moment-free approach. And since it is based on simulations, we do not need closed form expressions of any function that represents the probability law of the process. Thus, it is useful in case the probability density functions has no closed form or/and moments do not exist. It is based on a vector of functions of quantiles. The principle consists in matching functions of theoretical quantiles, which depend on the parameters of the assumed probability law, with those of empirical quantiles, which depend on the data. Since the theoretical functions of quantiles may not have a closed form expression, we rely on simulations. The second chapter deals with the estimation of the parameters of elliptical distributions by means of a multivariate extension of MSQ. In this chapter we propose inference for vast dimensional elliptical distributions. Estimation is based on quantiles, which always exist regardless of the thickness of the tails, and testing is based on the geometry of the elliptical family. The multivariate extension of MSQ faces the difficulty of constructing a function of quantiles that is informative about the covariation parameters. We show that the interquartile range of a projection of pairwise random variables onto the 45 degree line is very informative about the covariation. The third chapter consists in constructing a multivariate tail index estimator. In the univariate case, the most popular estimator for the tail exponent is the Hill estimator introduced by Bruce Hill in 1975. The aim of this chapter is to propose an estimator of the tail index in a multivariate context; more precisely, in the case of regularly varying elliptical distributions. Since, for univariate random variables, our estimator boils down to the Hill estimator, we name it after Bruce Hill. Our estimator is based on the distance between an elliptical probability contour and the exceedance observations. Finally, the fourth chapter investigates the asymptotic behaviour of the marginal sample quantiles for p-dimensional stationary processes and we obtain the asymptotic normality of the empirical quantile vector. We assume that the processes are S-mixing, a recently introduced and widely applicable notion of dependence. A remarkable property of S-mixing is the fact that it doesn't require any higher order moment assumptions to be verified. Since we are interested in quantiles and processes that are probably heavy-tailed, this is of particular interest.
Suggested Citation
Yves Dominicy, 2014.
"Quantile-based inference and estimation of heavy-tailed distributions,"
ULB Institutional Repository
2013/209311, ULB -- Universite Libre de Bruxelles.
Handle:
RePEc:ulb:ulbeco:2013/209311
Note: Degree: Doctorat en Sciences économiques et de gestion
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/209311. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.