IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202412.html
   My bibliography  Save this paper

Estimation and Testing of Forecast Rationality with Many Moments

Author

Listed:
  • Tae-Hwy Lee

    (Department of Economics, University of California Riverside)

  • Tao Wang

    (University of Victoria)

Abstract

We in this paper employ a penalized moment selection procedure to identify valid and relevant moments for estimating and testing forecast rationality within the flexible loss framework proposed by Elliott et al. (2005). We motivate the selection of moments in a high-dimensional setting, outlining the fundamental mechanism of the penalized moment selection procedure and demonstrating its implementation in the context of forecast rationality, particularly in the presence of potentially invalid moment conditions. The selection consistency and asymptotic normality are established under conditions specifically tailored to economic forecasting. Through a series of Monte Carlo simulations, we evaluate the finite sample performance of penalized moment estimation in utilizing available instrument information effectively within both estimation and testing procedures. Additionally, we present an empirical analysis using data from the Survey of Professional Forecasters issued by the Federal Reserve Bank of Philadelphia to illustrate the practical utility of the suggested methodology. The results indicate that the proposed postselection estimator for forecaster’s attitude performs comparably to the oracle estimator by efficiently incorporating available information. The power of rationality and symmetry tests leveraging penalized moment estimation is substantially enhanced by minimizing the impact of uninformative instruments. For practitioners assessing the rationality of externally generated forecasts, such as those in the Greenbook, the proposed penalized moment selection procedure could offer a robust approach to achieve more efficient estimation outcomes.

Suggested Citation

  • Tae-Hwy Lee & Tao Wang, 2024. "Estimation and Testing of Forecast Rationality with Many Moments," Working Papers 202412, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:202412
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202412.pdf
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Forecast rationality; Moment selection; Penalized estimation; Relevance; Validity;
    All these keywords.

    JEL classification:

    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.