IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201609.html
   My bibliography  Save this paper

State-dependent Preferences in Prediction Markets and Prices as Aggregate Statistic

Author

Listed:
  • Urmee Khan

    (Department of Economics, University of California Riverside)

Abstract

If traders in prediction markets have state-dependent preferences so that marginal utility of money varies across states, prices in a Rational Expectation equilibrium are quantile statistics of distributions that de- rive from both the distribution of realized signals, and the distribution of state-dependence parameters. As a result, even with a common prior and regardless of whether prices reveal realized signals fully or not, the interpretation of prices as posterior probabilities remains problematic.

Suggested Citation

  • Urmee Khan, 2016. "State-dependent Preferences in Prediction Markets and Prices as Aggregate Statistic," Working Papers 201609, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:201609
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201609.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F., 2006. "Interpreting the predictions of prediction markets," Economics Letters, Elsevier, vol. 91(3), pages 425-429, June.
    2. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    3. Marco Ottaviani & Peter Norman Sørensen, 2015. "Price Reaction to Information with Heterogeneous Beliefs and Wealth Effects: Underreaction, Momentum, and Reversal," American Economic Review, American Economic Association, vol. 105(1), pages 1-34, January.
    4. Radner, Roy, 1979. "Rational Expectations Equilibrium: Generic Existence and the Information Revealed by Prices," Econometrica, Econometric Society, vol. 47(3), pages 655-678, May.
    5. Marco Ottaviani & Peter Norman Sørensen, 2007. "Outcome Manipulation in Corporate Prediction Markets," Journal of the European Economic Association, MIT Press, vol. 5(2-3), pages 554-563, 04-05.
    6. Wolfers, Justin & Zitzewitz, Eric, 2006. "Interpreting Prediction Market Prices as Probabilities," IZA Discussion Papers 2092, Institute of Labor Economics (IZA).
    7. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urmee Khan, 2016. "State-dependent Preferences in Prediction Markets and Prices as Aggregate Statistic," Studies in Microeconomics, , vol. 4(1), pages 70-77, June.
    2. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    3. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    4. Bo Cowgill & Eric Zitzewitz, 2015. "Corporate Prediction Markets: Evidence from Google, Ford, and Firm X," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1309-1341.
    5. Stefan Palan & Jürgen Huber & Larissa Senninger, 2020. "Aggregation mechanisms for crowd predictions," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 788-814, September.
    6. Lionel Page & Robert T. Clemen, 2013. "Do Prediction Markets Produce Well‐Calibrated Probability Forecasts?-super-," Economic Journal, Royal Economic Society, vol. 123(568), pages 491-513, May.
    7. Boulu-Reshef, Béatrice & Comeig, Irene & Donze, Robert & Weiss, Gregory D., 2016. "Risk aversion in prediction markets: A framed-field experiment," Journal of Business Research, Elsevier, vol. 69(11), pages 5071-5075.
    8. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    9. Edoardo Gaffeo, 2013. "Using information markets in grantmaking. An assessment of the issues involved and an application to Italian banking foundations," DEM Discussion Papers 2013/08, Department of Economics and Management.
    10. Marco Ottaviani & Peter Norman Sørensen, 2009. "Aggregation of Information and Beliefs: Asset Pricing Lessons from Prediction Markets," Discussion Papers 09-14, University of Copenhagen. Department of Economics.
    11. Yiling Chen & Mike Ruberry & Jennifer Wortman Vaughan, 2012. "Designing Informative Securities," Papers 1210.4837, arXiv.org.
    12. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    13. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    14. Siemroth, Christoph, 2014. "Why prediction markets work : The role of information acquisition and endogenous weighting," Working Papers 14-02, University of Mannheim, Department of Economics.
    15. Lucian Arye Bebchuk & Chaim Fershtman, 1990. "The Effects of Insider Trading on Insiders' Choice Among Risky Investment Projects," Discussion Papers 897, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    16. Umut c{C}etin & Albina Danilova, 2014. "Markovian Nash equilibrium in financial markets with asymmetric information and related forward-backward systems," Papers 1407.2420, arXiv.org, revised Sep 2016.
    17. Michael Ostrovsky, 2012. "Information Aggregation in Dynamic Markets With Strategic Traders," Econometrica, Econometric Society, vol. 80(6), pages 2595-2647, November.
    18. Mikuláš Gangur & Miroslav Plevný, 2014. "Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 578-578, May.
    19. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    20. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.

    More about this item

    Keywords

    Prediction markets; information aggregation; state-dependent preferences;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.