IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/27183.html
   My bibliography  Save this paper

Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity

Author

Listed:
  • Bégout, Pascal
  • Diaz, Jesus Ildefonso

Abstract

We prove some existence (and sometimes also uniqueness) of weak solutions to some stationary equations associated to the complex Schrödinger operator under the presence of a singular nonlinear term. Among other new facts, with respect some previous results in the literature for such type of nonlinear potential terms, we include the case in which the spatial domain is possibly unbounded (something which is connected with some previous localization results by the authors), the presence of possible non-local terms at the equation, the case of boundary conditions different to the Dirichlet ones and, finally, the proof of the existence of solutions when the right-hand side term of the equation is beyond the usual L2-space

Suggested Citation

  • Bégout, Pascal & Diaz, Jesus Ildefonso, 2013. "Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity," TSE Working Papers 13-402, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:27183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1304.3389.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:27183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.