IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/25316.html
   My bibliography  Save this paper

A Duration Model with Dynamic Unobserved Heterogeneity

Author

Listed:
  • Botosaru, Irene

Abstract

The paper considers a new class of duration models in which unobserved heterogeneity changes with time. The class addresses two main questions: How does the exit probability from a state vary when unobserved heterogeneity evolves through time? And do changes in unobserved heterogeneity have a timing effect? We show the non- and semi-parametric identification of the new class by solving a nonlinear integral equation with unknown kernel. Both the function of observed covariates and the mean of the distribution of unobserved heterogeneity are nonparametrically identified. Identifying timing effects and the distribution of unobserved heterogeneity requires stronger assumptions on either one of the two. An extension to the case when unobserved heterogeneity is a function of observed covariates is also identified. We show that sieve maximum likelihood estimators are consistent and present Monte Carlo simulations for both correct specification and misspecification. The paper also presents an empirical model of unemployment duration in which individuals exit unemployment when total accumulated losses due to unemployment cross over a self-imposed spending limit.

Suggested Citation

  • Botosaru, Irene, 2011. "A Duration Model with Dynamic Unobserved Heterogeneity," TSE Working Papers 11-262, Toulouse School of Economics (TSE), revised Nov 2013.
  • Handle: RePEc:tse:wpaper:25316
    as

    Download full text from publisher

    File URL: http://www.tse-fr.eu/sites/default/files/medias/doc/wp/etrie/dh_version2.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bound, John & Stinebrickner, Todd & Waidmann, Timothy, 2010. "Health, economic resources and the work decisions of older men," Journal of Econometrics, Elsevier, vol. 156(1), pages 106-129, May.
    2. Bent Jesper Christensen & Malene Kallestrup‐Lamb, 2012. "The Impact Of Health Changes On Labor Supply: Evidence From Merged Data On Individual Objective Medical Diagnosis Codes And Early Retirement Behavior," Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 56-100, June.
    3. Eduardo A. Haddad & Jaime Bonet & Geoffrey J. D. Hewings, 2023. "Introduction and Overview," Advances in Spatial Science, in: Eduardo A. Haddad & Jaime Bonet & Geoffrey J. D. Hewings (ed.), The Colombian Economy and Its Regional Structural Challenges, chapter 0, pages 1-16, Springer.
    4. Ariga, Kenn & Ohkusa, Yasushi & Brunello, Giorgio, 1999. "Fast track: is it in the genes? The promotion policy of a large Japanese firm," Journal of Economic Behavior & Organization, Elsevier, vol. 38(4), pages 385-402, April.
    5. James J. Heckman & Christopher R. Taber, 1994. "Econometric Mixture Models and More General Models for Unobservables in Duration Analysis," NBER Technical Working Papers 0157, National Bureau of Economic Research, Inc.
    6. Aalen, Odd O. & Hjort, Nils Lid, 2002. "Frailty models that yield proportional hazards," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 335-342, July.
    7. Y. Kebir, 1991. "On hazard rate processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 865-876, December.
    8. Heckman, James J. & Singer, Burton, 1984. "Econometric duration analysis," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 63-132.
    9. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 403-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    2. Nathalie Gimenes & Emmanuel Guerre, 2019. "Nonparametric identification of an interdependent value model with buyer covariates from first-price auction bids," Papers 1910.10646, arXiv.org.
    3. Effraimidis, Georgios, 2016. "Nonparametric Identification of a Time-Varying Frailty Model," DaCHE discussion papers 2016:6, University of Southern Denmark, Dache - Danish Centre for Health Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    2. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    3. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    4. Brinch, Christian N., 2007. "Nonparametric Identification Of The Mixed Hazards Model With Time-Varying Covariates," Econometric Theory, Cambridge University Press, vol. 23(2), pages 349-354, April.
    5. Jaap H. Abbring & Gerard J. van den Berg, 2000. "The Non-Parametric Identification of the Mixed Proportional Hazards Competing Risks Model," Tinbergen Institute Discussion Papers 00-066/3, Tinbergen Institute.
    6. Berg, G.J. & Ours, J.C., 1994. "Eyeball tests for state dependence and unobserved heterogeneity in aggregate unemployment duration data," Serie Research Memoranda 0009, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Govert Ewout Bijwaard, 2014. "Multistate event history analysis with frailty," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(58), pages 1591-1620.
    8. Bo E. Honore & Aureo de Paula, 2007. "Interdependent Durations, Second Version," PIER Working Paper Archive 08-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Nov 2008.
    9. Dorsett, Richard, 2014. "The effect of temporary in-work support on employment retention: Evidence from a field experiment," Labour Economics, Elsevier, vol. 31(C), pages 61-71.
    10. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    11. Abbring, Jaap H. & Berg, Gerard J. van den, 2000. "The non-parametric identification of the mixed proportional hazards competing risks model," Serie Research Memoranda 0024, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Jean-Pierre Florens & Denis Fougère & Thierry Kamionka & Michel Mouchart, 1994. "La modélisation économétrique des transitions individuelles sur le marché du travail," Économie et Prévision, Programme National Persée, vol. 116(5), pages 181-217.
    13. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    14. Abbring, Jaap H & van den Berg, Gerard J, 2005. "Social experiments and intrumental variables with duration outcomes," Working Paper Series 2005:11, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    15. Jaap H. Abbring, 2012. "Mixed Hitting‐Time Models," Econometrica, Econometric Society, vol. 80(2), pages 783-819, March.
    16. Falavigna Falavigna & Elena Ragazzi & Lisa Sella, "undated". "Vocational training and labour market: inclusion or segregation paths? An integrated approach on immigrant trainees in Piedmont," CERIS Working Paper 201425, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    17. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    18. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Bent Jesper Christensen & Malene Kallestrup‐Lamb, 2012. "The Impact Of Health Changes On Labor Supply: Evidence From Merged Data On Individual Objective Medical Diagnosis Codes And Early Retirement Behavior," Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 56-100, June.
    20. Malene Kallestrup-Lamb, 2011. "The Role of the Spouse in Early Retirement Decisions for Older Workers," CREATES Research Papers 2011-38, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    duration analysis; Levy process; dynamic unobserved heterogeneity; identification; mixture;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:25316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.